The geometry of C1,α flat isometric immersions

Camillo De Lellis, M. R. Pakzad
{"title":"The geometry of C1,α flat isometric immersions","authors":"Camillo De Lellis, M. R. Pakzad","doi":"10.1017/prm.2024.55","DOIUrl":null,"url":null,"abstract":"We show that any isometric immersion of a flat plane domain into \n \n ${\\mathbb {R}}^3$\n \n \n is developable provided it enjoys the little Hölder regularity \n \n $c^{1,2/3}$\n \n \n . In particular, isometric immersions of local \n \n $C^{1,\\alpha }$\n \n \n regularity with \n \n $\\alpha >2/3$\n \n \n belong to this class. The proof is based on the existence of a weak notion of second fundamental form for such immersions, the analysis of the Gauss–Codazzi–Mainardi equations in this weak setting, and a parallel result on the very weak solutions to the degenerate Monge–Ampère equation analysed in [M. Lewicka and M. R. Pakzad. Anal. PDE 10 (2017), 695–727.].","PeriodicalId":517305,"journal":{"name":"Proceedings of the Royal Society of Edinburgh: Section A Mathematics","volume":"15 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh: Section A Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/prm.2024.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We show that any isometric immersion of a flat plane domain into ${\mathbb {R}}^3$ is developable provided it enjoys the little Hölder regularity $c^{1,2/3}$ . In particular, isometric immersions of local $C^{1,\alpha }$ regularity with $\alpha >2/3$ belong to this class. The proof is based on the existence of a weak notion of second fundamental form for such immersions, the analysis of the Gauss–Codazzi–Mainardi equations in this weak setting, and a parallel result on the very weak solutions to the degenerate Monge–Ampère equation analysed in [M. Lewicka and M. R. Pakzad. Anal. PDE 10 (2017), 695–727.].
C1,α 平面等距沉浸的几何形状
我们证明,平面域的任何等距浸入${mathbb {R}}^3$ 都是可展开的,只要它具有小霍尔德正则性$c^{1,2/3}$。特别地,局部$C^{1,\alpha }$ 正则性的等距浸入且$\alpha >2/3$属于这一类。证明的基础是这类浸入的第二基本形式的弱概念的存在、在这种弱设置下对高斯-科达兹-马纳尔迪方程的分析,以及[M. Lewicka and M. R. Pakzad. Anal. PDE 10 (2017), 695-727.] 中分析的退化蒙日-安培方程的极弱解的平行结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信