Semantic Verification in Large Language Model-based Retrieval Augmented Generation

Andreas Martin, Hans Friedrich Witschel, Maximilian Mandl, Mona Stockhecke
{"title":"Semantic Verification in Large Language Model-based Retrieval Augmented Generation","authors":"Andreas Martin, Hans Friedrich Witschel, Maximilian Mandl, Mona Stockhecke","doi":"10.1609/aaaiss.v3i1.31199","DOIUrl":null,"url":null,"abstract":"This position paper presents a novel approach of semantic verification in Large Language Model-based Retrieval Augmented Generation (LLM-RAG) systems, focusing on the critical need for factually accurate information dissemination during public debates, especially prior to plebiscites e.g. in direct democracies, particularly in the context of Switzerland. Recognizing the unique challenges posed by the current generation of Large Language Models (LLMs) in maintaining factual integrity, this research proposes an innovative solution that integrates retrieval mechanisms with enhanced semantic verification processes. The paper outlines a comprehensive methodology following a Design Science Research approach, which includes defining user personas, designing conversational interfaces, and iteratively developing a hybrid dialogue system. Central to this system is a robust semantic verification framework that leverages a knowledge graph for fact-checking and validation, ensuring the correctness and consistency of information generated by LLMs. The paper discusses the significance of this research in the context of Swiss direct democracy, where informed decision-making is pivotal. By improving the accuracy and reliability of information provided to the public, the proposed system aims to support the democratic process, enabling citizens to make well-informed decisions on complex issues. The research contributes to advancing the field of natural language processing and information retrieval, demonstrating the potential of AI and LLMs in enhancing civic engagement and democratic participation.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"16 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This position paper presents a novel approach of semantic verification in Large Language Model-based Retrieval Augmented Generation (LLM-RAG) systems, focusing on the critical need for factually accurate information dissemination during public debates, especially prior to plebiscites e.g. in direct democracies, particularly in the context of Switzerland. Recognizing the unique challenges posed by the current generation of Large Language Models (LLMs) in maintaining factual integrity, this research proposes an innovative solution that integrates retrieval mechanisms with enhanced semantic verification processes. The paper outlines a comprehensive methodology following a Design Science Research approach, which includes defining user personas, designing conversational interfaces, and iteratively developing a hybrid dialogue system. Central to this system is a robust semantic verification framework that leverages a knowledge graph for fact-checking and validation, ensuring the correctness and consistency of information generated by LLMs. The paper discusses the significance of this research in the context of Swiss direct democracy, where informed decision-making is pivotal. By improving the accuracy and reliability of information provided to the public, the proposed system aims to support the democratic process, enabling citizens to make well-informed decisions on complex issues. The research contributes to advancing the field of natural language processing and information retrieval, demonstrating the potential of AI and LLMs in enhancing civic engagement and democratic participation.
基于大型语言模型的检索增强生成中的语义验证
本立场文件介绍了在基于大型语言模型的检索增强生成(LLM-RAG)系统中进行语义验证的新方法,重点关注在公开辩论期间,特别是在直接民主国家的全民投票之前,尤其是在瑞士的背景下,对事实准确性信息传播的关键需求。本研究认识到目前的大语言模型(LLM)在保持事实完整性方面所面临的独特挑战,提出了一种创新的解决方案,将检索机制与增强的语义验证过程整合在一起。论文概述了一种采用设计科学研究方法的综合方法,包括定义用户角色、设计对话界面和迭代开发混合对话系统。该系统的核心是一个强大的语义验证框架,它利用知识图谱进行事实检查和验证,确保 LLM 生成的信息的正确性和一致性。论文讨论了这项研究在瑞士直接民主背景下的意义,在瑞士,知情决策至关重要。通过提高向公众提供的信息的准确性和可靠性,拟议的系统旨在支持民主进程,使公民能够就复杂问题做出充分知情的决策。这项研究有助于推动自然语言处理和信息检索领域的发展,展示了人工智能和 LLM 在加强公民参与和民主参与方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信