{"title":"Personalized Image Generation Through Swiping","authors":"Yuto Nakashima","doi":"10.1609/aaaiss.v3i1.31238","DOIUrl":null,"url":null,"abstract":"Generating preferred images from GANs is a challenging task due to the high-dimensional nature of latent space. In this study, we propose a novel approach that uses simple user-swipe interactions to generate preferred images from users. To effectively explore the latent space with only swipe interactions, we apply principal component analysis to the latent space of StyleGAN, creating meaningful subspaces. Additionally, we use a multi-armed bandit algorithm to decide which dimensions to explore, focusing on the user's preferences. Our experiments show that our method is more efficient in generating preferred images than the baseline.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"7 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Generating preferred images from GANs is a challenging task due to the high-dimensional nature of latent space. In this study, we propose a novel approach that uses simple user-swipe interactions to generate preferred images from users. To effectively explore the latent space with only swipe interactions, we apply principal component analysis to the latent space of StyleGAN, creating meaningful subspaces. Additionally, we use a multi-armed bandit algorithm to decide which dimensions to explore, focusing on the user's preferences. Our experiments show that our method is more efficient in generating preferred images than the baseline.
由于潜在空间的高维特性,从 GAN 生成首选图像是一项具有挑战性的任务。在本研究中,我们提出了一种新方法,利用简单的用户滑动交互从用户生成首选图片。为了有效地利用刷卡交互探索潜在空间,我们对 StyleGAN 的潜在空间进行了主成分分析,从而创建了有意义的子空间。此外,我们还使用多臂匪徒算法来决定探索哪些维度,重点关注用户的偏好。实验表明,我们的方法在生成首选图片方面比基线方法更有效。