SVM Optimization with Grid Search Cross Validation for Improving Accuracy of Schizophrenia Classification Based on EEG Signal

Masdar Desiawan, Achmad Solichin
{"title":"SVM Optimization with Grid Search Cross Validation for Improving Accuracy of Schizophrenia Classification Based on EEG Signal","authors":"Masdar Desiawan, Achmad Solichin","doi":"10.15408/jti.v17i1.37422","DOIUrl":null,"url":null,"abstract":"The advantage of the Support Vector Machine (SVM) is that it can solve classification and regression problems both linearly and non-linearly. SVM also has high accuracy and a relatively low error rate. However, SVM also has weaknesses, namely the difficulty of determining optimal parameter values, even though setting exact parameter values affects the accuracy of SVM classification. Therefore, to overcome the weaknesses of SVM, optimizing and finding optimal parameter values is necessary. The aim of this research is SVM optimization to find optimal parameter values using the Grid Search Cross-Validation method to increase accuracy in schizophrenia classification. Experiments show that optimization parameters always find a nearly optimal combination of parameters within a specific range. The results of this study show that the level of accuracy obtained by SVM with the grid search cross-validation method in the schizophrenia classification increased by 9.5% with the best parameters, namely C = 1000, gamma = scale, and kernel = RBF, the best parameters were applied to the SVM algorithm and obtained an accuracy of 99.75%, previously without optimizing the accuracy reached 90.25%. The optimal parameters of the SVM obtained by the grid search cross-validation method with a high degree of accuracy can be used as a model to overcome the classification of schizophrenia.","PeriodicalId":506287,"journal":{"name":"JURNAL TEKNIK INFORMATIKA","volume":"22 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL TEKNIK INFORMATIKA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15408/jti.v17i1.37422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advantage of the Support Vector Machine (SVM) is that it can solve classification and regression problems both linearly and non-linearly. SVM also has high accuracy and a relatively low error rate. However, SVM also has weaknesses, namely the difficulty of determining optimal parameter values, even though setting exact parameter values affects the accuracy of SVM classification. Therefore, to overcome the weaknesses of SVM, optimizing and finding optimal parameter values is necessary. The aim of this research is SVM optimization to find optimal parameter values using the Grid Search Cross-Validation method to increase accuracy in schizophrenia classification. Experiments show that optimization parameters always find a nearly optimal combination of parameters within a specific range. The results of this study show that the level of accuracy obtained by SVM with the grid search cross-validation method in the schizophrenia classification increased by 9.5% with the best parameters, namely C = 1000, gamma = scale, and kernel = RBF, the best parameters were applied to the SVM algorithm and obtained an accuracy of 99.75%, previously without optimizing the accuracy reached 90.25%. The optimal parameters of the SVM obtained by the grid search cross-validation method with a high degree of accuracy can be used as a model to overcome the classification of schizophrenia.
基于脑电信号的 SVM 优化与网格搜索交叉验证用于提高精神分裂症分类的准确性
支持向量机 (SVM) 的优势在于它可以线性和非线性地解决分类和回归问题。SVM 的准确率也很高,错误率相对较低。但是,SVM 也有弱点,即难以确定最佳参数值,即使设置精确的参数值也会影响 SVM 分类的准确性。因此,要克服 SVM 的弱点,就必须优化并找到最佳参数值。本研究的目的是利用网格搜索交叉验证法对 SVM 进行优化,找到最佳参数值,以提高精神分裂症分类的准确性。实验表明,优化参数总能在特定范围内找到近乎最优的参数组合。研究结果表明,采用网格搜索交叉验证法的 SVM 在精神分裂症分类中获得的准确率水平在最佳参数(即 C = 1000、gamma = scale 和核 = RBF)的作用下提高了 9.5%,将最佳参数应用于 SVM 算法并获得了 99.75% 的准确率,而之前未经优化的准确率达到了 90.25%。网格搜索交叉验证法得到的 SVM 最佳参数具有较高的准确率,可以作为克服精神分裂症分类的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信