Comparing Human Behavior to an Optimal Policy for Innovation

Bonan Zhao, Natalia Vélez, Thomas L. Griffiths
{"title":"Comparing Human Behavior to an Optimal Policy for Innovation","authors":"Bonan Zhao, Natalia Vélez, Thomas L. Griffiths","doi":"10.1609/aaaiss.v3i1.31291","DOIUrl":null,"url":null,"abstract":"Human learning does not stop at solving a single problem. Instead, we seek new challenges, define new goals, and come up with new ideas. Unlike the classic explore-exploit trade-off between known and unknown options, making new tools or generating new ideas is not about collecting data from existing unknown options, but rather about create new options out of what is currently available. We introduce a discovery game designed to study how rational agents make decisions about pursuing innovations, where discovering new ideas is a process of combining existing ideas in an open-ended compositional space. We derive optimal policies of this decision problem formalized as a Markov decision process, and compare people's behaviors to the model predictions in an online behavioral experiment. We found evidence that people both innovate rationally, guided by potential returns in this discovery game, and under- and over-explore systematically in different settings.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"15 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human learning does not stop at solving a single problem. Instead, we seek new challenges, define new goals, and come up with new ideas. Unlike the classic explore-exploit trade-off between known and unknown options, making new tools or generating new ideas is not about collecting data from existing unknown options, but rather about create new options out of what is currently available. We introduce a discovery game designed to study how rational agents make decisions about pursuing innovations, where discovering new ideas is a process of combining existing ideas in an open-ended compositional space. We derive optimal policies of this decision problem formalized as a Markov decision process, and compare people's behaviors to the model predictions in an online behavioral experiment. We found evidence that people both innovate rationally, guided by potential returns in this discovery game, and under- and over-explore systematically in different settings.
将人类行为与最佳创新政策相比较
人类的学习不会止步于解决单一问题。相反,我们会寻求新的挑战,确定新的目标,提出新的想法。与在已知和未知选项之间进行经典的探索-开发权衡不同,制造新工具或产生新想法不是从现有的未知选项中收集数据,而是从现有的选项中创造新选项。我们引入了一个发现博弈,旨在研究理性代理人如何做出追求创新的决策,在这个博弈中,发现新想法是在一个开放式的组合空间中组合现有想法的过程。我们推导出这一决策问题的最优策略,并将其形式化为马尔可夫决策过程,同时在在线行为实验中将人们的行为与模型预测进行比较。我们发现有证据表明,在这种发现游戏中,人们既能在潜在回报的指导下理性创新,也能在不同环境下系统性地探索不足或探索过度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信