The Orthogonal Bases of Exponential Functions Based on Moran-Sierpinski Measures

IF 0.8 3区 数学 Q2 MATHEMATICS
Qi Rong Deng, Xing Gang He, Ming Tian Li, Yuan Ling Ye
{"title":"The Orthogonal Bases of Exponential Functions Based on Moran-Sierpinski Measures","authors":"Qi Rong Deng,&nbsp;Xing Gang He,&nbsp;Ming Tian Li,&nbsp;Yuan Ling Ye","doi":"10.1007/s10114-024-2604-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>A</i><sub><i>n</i></sub> ∈ <i>M</i><sub>2</sub> (ℤ) be integral matrices such that the infinite convolution of Dirac measures with equal weights</p><div><div><span>$$\\mu_{\\{A_{n},n\\geq1\\}}:=\\delta_{A_{1}^{-1}\\cal{D}}\\ast\\delta_{A_{1}^{-1}A_{2}^{-2}\\cal{D}}\\ast\\cdots$$</span></div></div><p> is a probability measure with compact support, where <span>\\(\\cal{D}=\\{(0,0)^{t},(1,0)^{t},(0,1)^{t}\\}\\)</span> is the Sierpinski digit. We prove that there exists a set Λ ⊂ ℝ<sup>2</sup> such that the family {e<sup>2<i>π</i>i〈λ,<i>x</i>〉</sup>: λ ∈ Λ} is an orthonormal basis of <span>\\(L^{2}(\\mu_{\\{A_{n},n\\geq1\\}})\\)</span> if and only if <span>\\({1\\over{3}}(1,-1)A_{n}\\in\\mathbb{Z}^{2}\\)</span> for <i>n</i> ≥ 2 under some metric conditions on <i>A</i><sub><i>n</i></sub>.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 7","pages":"1804 - 1824"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2604-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let AnM2 (ℤ) be integral matrices such that the infinite convolution of Dirac measures with equal weights

$$\mu_{\{A_{n},n\geq1\}}:=\delta_{A_{1}^{-1}\cal{D}}\ast\delta_{A_{1}^{-1}A_{2}^{-2}\cal{D}}\ast\cdots$$

is a probability measure with compact support, where \(\cal{D}=\{(0,0)^{t},(1,0)^{t},(0,1)^{t}\}\) is the Sierpinski digit. We prove that there exists a set Λ ⊂ ℝ2 such that the family {e2πi〈λ,x: λ ∈ Λ} is an orthonormal basis of \(L^{2}(\mu_{\{A_{n},n\geq1\}})\) if and only if \({1\over{3}}(1,-1)A_{n}\in\mathbb{Z}^{2}\) for n ≥ 2 under some metric conditions on An.

基于 Moran-Sierpinski 测量的指数函数正交基
让 An∈ M2 (ℤ) 是积分矩阵,使得权重相等的狄拉克量的无限卷积$$mu_{\{A_{n},n\geq1\}}:=\delta_{A_{1}^{-1}\cal{D}}\ast/delta_{A_{1}^{-1}A_{2}^{-2}\cal{D}}\dcots$$ 是一个具有紧凑支持的概率度量,其中 \(\cal{D}=\{(0,0)^{t},(1,0)^{t},(0,1)^{t}\}) 是 Sierpinski 数字。我们证明存在一个集合Λ ⊂ ℝ2,使得族{e2πi〈λ,x〉:λ∈Λ}是(L^{2}(\mu_{\{A_{n},n\geq1\}})\)的正交基础,当且仅当({1\over{3}}(1,-1)A_{n}\in\mathbb{Z}^{2}\)在An上的一些度量条件下n≥2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信