Rasool Mohammadi Abokheili, Naser Kordani, H. Aghajani Derazkola, Jafar Nejadali
{"title":"Experimental investigation of the polymer-metal hybrids interfacial bonding fabricated by fused deposition modeling","authors":"Rasool Mohammadi Abokheili, Naser Kordani, H. Aghajani Derazkola, Jafar Nejadali","doi":"10.1177/14644207241252907","DOIUrl":null,"url":null,"abstract":"In this paper, the fabrication of polymer-metal hybrids by fused deposition modeling was evaluated. 6061 aluminum alloy and polylactic acid were used in the manufacturing process. Also, to strengthen the bonding between the metal and polymer components, a two-component epoxy adhesive was used. The pull-off adhesion test was performed to evaluate the interfacial bonding strength of the specimens. In this study, the effect of bed temperature, print speed, printer nozzle diameter, and aluminum sheet surface roughness on the bond strength of polymer-metal hybrids has been investigated. The results showed that increasing the bed temperature, and aluminum sheet surface roughness, and also decreasing the print speed led to increase the bond strength of polymer-metal hybrids. Finally, by using the experimental data, an optimal specimen was produced. The interfacial bonding strength of the optimal specimen is about 64% stronger than the initial specimen.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241252907","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the fabrication of polymer-metal hybrids by fused deposition modeling was evaluated. 6061 aluminum alloy and polylactic acid were used in the manufacturing process. Also, to strengthen the bonding between the metal and polymer components, a two-component epoxy adhesive was used. The pull-off adhesion test was performed to evaluate the interfacial bonding strength of the specimens. In this study, the effect of bed temperature, print speed, printer nozzle diameter, and aluminum sheet surface roughness on the bond strength of polymer-metal hybrids has been investigated. The results showed that increasing the bed temperature, and aluminum sheet surface roughness, and also decreasing the print speed led to increase the bond strength of polymer-metal hybrids. Finally, by using the experimental data, an optimal specimen was produced. The interfacial bonding strength of the optimal specimen is about 64% stronger than the initial specimen.
期刊介绍:
The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers.
"The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK
This journal is a member of the Committee on Publication Ethics (COPE).