Design of advanced steels by integrated computational materials engineering

Xiao-Gang Lu, Yanlin He, Weisen Zheng
{"title":"Design of advanced steels by integrated computational materials engineering","authors":"Xiao-Gang Lu,&nbsp;Yanlin He,&nbsp;Weisen Zheng","doi":"10.1002/mgea.36","DOIUrl":null,"url":null,"abstract":"<p>The integrated computational materials engineering (ICME) has achieved great success in accelerating the rational design and deployment of new materials. It is a new route of designing new materials and processes and highlighted by Materials Genome Initiative/Engineering that stresses the high-throughput computation in addition to high-throughput experimentation and materials informatics. This article presents a brief review on the basic theories and multi-scale computational tools of ICME to design advanced steel grades, including the first-principles calculations, the CALPHAD method (i.e., computational thermodynamics) fueled by dedicated databases, diffusion and phase-field simulations, as well as finite analysis methods and machine learning. In the ICME scheme to deal with steels, the CALPHAD method is considered as the core to readily consider multi-component systems and integrated to link the microscopic simulations (such as diffusion and phase field method to predict microstructure evolutions in response to external conditions) and macroscopic finite analysis method to deal with mechanical properties. Two applications are also presented to address the new routes to carry out materials design, especially for advanced steels.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.36","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integrated computational materials engineering (ICME) has achieved great success in accelerating the rational design and deployment of new materials. It is a new route of designing new materials and processes and highlighted by Materials Genome Initiative/Engineering that stresses the high-throughput computation in addition to high-throughput experimentation and materials informatics. This article presents a brief review on the basic theories and multi-scale computational tools of ICME to design advanced steel grades, including the first-principles calculations, the CALPHAD method (i.e., computational thermodynamics) fueled by dedicated databases, diffusion and phase-field simulations, as well as finite analysis methods and machine learning. In the ICME scheme to deal with steels, the CALPHAD method is considered as the core to readily consider multi-component systems and integrated to link the microscopic simulations (such as diffusion and phase field method to predict microstructure evolutions in response to external conditions) and macroscopic finite analysis method to deal with mechanical properties. Two applications are also presented to address the new routes to carry out materials design, especially for advanced steels.

Abstract Image

通过综合计算材料工程学设计先进钢材
集成计算材料工程(ICME)在加速新材料的合理设计和应用方面取得了巨大成功。这是一条设计新材料和新工艺的新途径,也是材料基因组计划(Materials Genome Initiative/Engineering)所强调的,在高通量实验和材料信息学之外强调高通量计算。本文简要回顾了ICME设计先进钢种的基本理论和多尺度计算工具,包括第一性原理计算、由专用数据库支持的CALPHAD方法(即计算热力学)、扩散和相场模拟,以及有限分析方法和机器学习。在处理钢材的 ICME 方案中,CALPHAD 方法被认为是随时考虑多组分系统的核心,并集成了微观模拟(如预测微观结构随外部条件变化的扩散和相场方法)和处理机械性能的宏观有限分析方法。此外,还介绍了两种应用,以解决进行材料设计,特别是先进钢材设计的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信