To learn the subgroup structure generated by multidimensional interaction, we propose a novel multiview subgroup integration technique based on tensor decomposition. Compared to the traditional subgroup analysis that can only handle single-view heterogeneity, our proposed method achieves a greater level of homogeneity within the subgroups, leading to enhanced interpretability and predictive power. For computational readiness of the proposed method, we build an algorithm that incorporates pairwise shrinkage-encouraging penalties and ADMM techniques. Theoretically, we establish the asymptotic consistency and normality of the proposed estimators. Extensive simulation studies and real data analysis demonstrate that our proposal outperforms other methods in terms of prediction accuracy and grouping consistency. In addition, the analysis based on the proposed method indicates that intergenerational care significantly increases the risk of chronic diseases associated with diet and fatigue in all provinces while only reducing the risk of emotion-related chronic diseases in the eastern coastal and central regions of China.