A Comparative Analysis of Random Forest, XGBoost, and LightGBM Algorithms for Emotion Classification in Reddit Comments

Nenny Anggraini, S. Putra, Luh Kesuma Wardhani, Farid Dhiya Ul Arif, Nashrul Hakiem, I. Shofi
{"title":"A Comparative Analysis of Random Forest, XGBoost, and LightGBM Algorithms for Emotion Classification in Reddit Comments","authors":"Nenny Anggraini, S. Putra, Luh Kesuma Wardhani, Farid Dhiya Ul Arif, Nashrul Hakiem, I. Shofi","doi":"10.15408/jti.v17i1.38651","DOIUrl":null,"url":null,"abstract":"This research aims to compare the performance of three classification algorithms, namely Random Forest, XGBoost, and LightGBM, in classifying emotions in Reddit comments. Emotion classification in Reddit comments is a complex classification problem due to its numerous variations and ambiguities. This research utilizes the GoEmotions Fine-Grained dataset, filtered down to 7,325 Reddit comments with 5 different basic emotion labels. In this study, data preprocessing steps, feature extraction using CountVectorizer and TF-IDF, and hyperparameter tuning using GridSearchCV for each algorithm are conducted. Subsequently, model evaluation is performed using Cross-Validation and confusion matrix. The results of the study indicate that Random Forest outperforms the XGBoost and LightGBM algorithm with an accuracy of 75.38% compared to XGBoost with 69.05% accuracy and LightGBM with 66.63% accuracy.","PeriodicalId":506287,"journal":{"name":"JURNAL TEKNIK INFORMATIKA","volume":"32 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL TEKNIK INFORMATIKA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15408/jti.v17i1.38651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to compare the performance of three classification algorithms, namely Random Forest, XGBoost, and LightGBM, in classifying emotions in Reddit comments. Emotion classification in Reddit comments is a complex classification problem due to its numerous variations and ambiguities. This research utilizes the GoEmotions Fine-Grained dataset, filtered down to 7,325 Reddit comments with 5 different basic emotion labels. In this study, data preprocessing steps, feature extraction using CountVectorizer and TF-IDF, and hyperparameter tuning using GridSearchCV for each algorithm are conducted. Subsequently, model evaluation is performed using Cross-Validation and confusion matrix. The results of the study indicate that Random Forest outperforms the XGBoost and LightGBM algorithm with an accuracy of 75.38% compared to XGBoost with 69.05% accuracy and LightGBM with 66.63% accuracy.
随机森林、XGBoost 和 LightGBM 算法在 Reddit 评论中进行情感分类的比较分析
本研究旨在比较随机森林、XGBoost 和 LightGBM 这三种分类算法在 Reddit 评论中的情感分类性能。Reddit 评论中的情绪分类是一个复杂的分类问题,因为它存在许多变化和模糊性。本研究利用 GoEmotions 精细数据集,筛选出 7,325 条带有 5 种不同基本情感标签的 Reddit 评论。在这项研究中,对每种算法都进行了数据预处理步骤、使用 CountVectorizer 和 TF-IDF 进行特征提取以及使用 GridSearchCV 进行超参数调整。随后,使用交叉验证和混淆矩阵对模型进行评估。研究结果表明,随机森林的准确率为 75.38%,优于 XGBoost 和 LightGBM 算法,而 XGBoost 的准确率为 69.05%,LightGBM 的准确率为 66.63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信