SPLINE QUASI-INTERPOLATION NUMERICAL METHODS FOR INTEGRO-DIFFERENTIAL EQUATIONS WITH WEAKLY SINGULAR KERNELS

IF 1.6 3区 数学 Q1 MATHEMATICS
A. Saou, D. Sbibih, M. Tahrichi, Domingo Barrera
{"title":"SPLINE QUASI-INTERPOLATION NUMERICAL METHODS FOR INTEGRO-DIFFERENTIAL EQUATIONS WITH WEAKLY SINGULAR KERNELS","authors":"A. Saou, D. Sbibih, M. Tahrichi, Domingo Barrera","doi":"10.3846/mma.2024.18832","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a numerical approach that utilizes spline quasi-interpolation operators over a bounded interval. This method is designed to provide a numerical solution for a class of Fredholm integro-differential equations with weakly singular kernels. We outline the computational components involved in determining the approximate solution and provide theoretical findings regarding the convergence rate. This convergence rate is analyzed in relation to both the degree of the quasi-interpolant and the grading exponent of the graded grid partition. Finally, we present numerical experiments that validate the theoretical findings.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2024.18832","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we introduce a numerical approach that utilizes spline quasi-interpolation operators over a bounded interval. This method is designed to provide a numerical solution for a class of Fredholm integro-differential equations with weakly singular kernels. We outline the computational components involved in determining the approximate solution and provide theoretical findings regarding the convergence rate. This convergence rate is analyzed in relation to both the degree of the quasi-interpolant and the grading exponent of the graded grid partition. Finally, we present numerical experiments that validate the theoretical findings.
弱奇异核积分微分方程的样条准插值数值方法
在这项工作中,我们介绍了一种利用有界区间上的花键准插值算子的数值方法。该方法旨在为一类具有弱奇异内核的弗雷德霍尔姆积分微分方程提供数值解。我们概述了确定近似解所涉及的计算部分,并提供了有关收敛速率的理论发现。我们分析了收敛速度与准内插数度和分级网格划分的分级指数的关系。最后,我们介绍了验证理论结论的数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信