Constructive approach and randomization of a two-parameter chaos system for securing data

Olalekan Taofeek Wahab, Salaudeen Alaro Musa, Abdulazeez Jimoh, K. Dauda
{"title":"Constructive approach and randomization of a two-parameter chaos system for securing data","authors":"Olalekan Taofeek Wahab, Salaudeen Alaro Musa, Abdulazeez Jimoh, K. Dauda","doi":"10.46481/jnsps.2024.1747","DOIUrl":null,"url":null,"abstract":"Secure communication techniques are important due to the increase in the number of technology users across the world. Likewise, a more random encryption algorithm suitable to secure data from unauthorised users is highly expected. This paper proposes a two-parameter nonlinear chaos map that is sensitive to the trio seed (s0, \\alpha, \\lambda) and has better information encryption. We introduce the parameter \\alpha to linearise the conventional chaos system, which in turn brings a delay in the cryptosystems. The delay is a phenomenon that changes the chaotic features of a system. A small delay in the system leads to more aperiodicity and the unpredictability of the chaotic attractions. We normalise the new chaos map and use the Lipschitz and pseudo-contractive operators to obtain its irregularity region in Hilbert spaces. We also analyse the chaos map in terms of trajectory, Lyapunov exponent, complexity, and information entropy. Results obtained show that the new chaos map has a wide chaotic range and better statistical properties. It also maintains low complexity due to its linearity and produces more key spaces than most existing chaotic maps.","PeriodicalId":342917,"journal":{"name":"Journal of the Nigerian Society of Physical Sciences","volume":"8 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Society of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46481/jnsps.2024.1747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Secure communication techniques are important due to the increase in the number of technology users across the world. Likewise, a more random encryption algorithm suitable to secure data from unauthorised users is highly expected. This paper proposes a two-parameter nonlinear chaos map that is sensitive to the trio seed (s0, \alpha, \lambda) and has better information encryption. We introduce the parameter \alpha to linearise the conventional chaos system, which in turn brings a delay in the cryptosystems. The delay is a phenomenon that changes the chaotic features of a system. A small delay in the system leads to more aperiodicity and the unpredictability of the chaotic attractions. We normalise the new chaos map and use the Lipschitz and pseudo-contractive operators to obtain its irregularity region in Hilbert spaces. We also analyse the chaos map in terms of trajectory, Lyapunov exponent, complexity, and information entropy. Results obtained show that the new chaos map has a wide chaotic range and better statistical properties. It also maintains low complexity due to its linearity and produces more key spaces than most existing chaotic maps.
用于数据安全的双参数混沌系统的建设性方法和随机化
随着全球技术用户数量的增加,安全通信技术显得尤为重要。同样,人们也非常期待一种更随机的加密算法,以防止未经授权的用户窃取数据。本文提出了一种双参数非线性混沌图,它对三元种子(s0, \alpha,\lambda)敏感,并具有更好的信息加密效果。我们引入参数 \alpha 来使传统混沌系统线性化,这反过来又会给密码系统带来延迟。延迟是一种改变系统混沌特征的现象。系统中的小延迟会导致更多的非周期性和混沌吸引力的不可预测性。我们对新的混沌图进行归一化处理,并使用 Lipschitz 和伪收缩算子来获得其在希尔伯特空间中的不规则区域。我们还从轨迹、Lyapunov 指数、复杂性和信息熵等方面分析了混沌图。结果表明,新的混沌图具有较宽的混沌范围和较好的统计特性。由于其线性,它还能保持较低的复杂度,并比大多数现有的混沌图产生更多的关键空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信