Enhanced Supercapacitor Performance by Harnessing Carbon Nanoparticles and Colloidal SnO2 Quantum Dots

Crystals Pub Date : 2024-05-21 DOI:10.3390/cryst14060482
T. T. Salunkhe, Babu Bathula, I. Kim, V. Thirumal, Kisoo Yoo
{"title":"Enhanced Supercapacitor Performance by Harnessing Carbon Nanoparticles and Colloidal SnO2 Quantum Dots","authors":"T. T. Salunkhe, Babu Bathula, I. Kim, V. Thirumal, Kisoo Yoo","doi":"10.3390/cryst14060482","DOIUrl":null,"url":null,"abstract":"The creation of effective supercapacitor materials is still a priority in the quest to improve energy storage technology. Herein, we present a novel nanocomposite composed of carbon nanoparticles (CNPs) and colloidal SnO2 quantum dots (c-SQDs) or colloidal SnO2 ultrasmall nanoparticles, synthesized through a facile sonochemical-assisted hydrothermal approach. The XRD and XPS analyses confirmed the successful synthesis and composition of the CNP/c-SQD nanocomposite. Morphology studies revealed a well-dispersed morphology with intimate interfacial interactions between the CNPs and c-SQDs. Specifically, the nanocomposite exhibited a high specific capacitance of 569 F/g at a current density of 1 A/g, surpassing conventional carbon-based supercapacitors. Furthermore, the nanocomposite displayed excellent stability with 99% capacity retention after 5000 cycles, indicative of its superior cyclability. These results underscore the potential of the CNP/c-SQD nanocomposite as a promising electrode material for high-performance supercapacitor applications, offering enhanced charge storage capacity, stability, and cyclability. This study contributes to the advancement of energy storage technologies, paving the way for the development of efficient and sustainable electrochemical energy storage devices.","PeriodicalId":505131,"journal":{"name":"Crystals","volume":"35 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryst14060482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The creation of effective supercapacitor materials is still a priority in the quest to improve energy storage technology. Herein, we present a novel nanocomposite composed of carbon nanoparticles (CNPs) and colloidal SnO2 quantum dots (c-SQDs) or colloidal SnO2 ultrasmall nanoparticles, synthesized through a facile sonochemical-assisted hydrothermal approach. The XRD and XPS analyses confirmed the successful synthesis and composition of the CNP/c-SQD nanocomposite. Morphology studies revealed a well-dispersed morphology with intimate interfacial interactions between the CNPs and c-SQDs. Specifically, the nanocomposite exhibited a high specific capacitance of 569 F/g at a current density of 1 A/g, surpassing conventional carbon-based supercapacitors. Furthermore, the nanocomposite displayed excellent stability with 99% capacity retention after 5000 cycles, indicative of its superior cyclability. These results underscore the potential of the CNP/c-SQD nanocomposite as a promising electrode material for high-performance supercapacitor applications, offering enhanced charge storage capacity, stability, and cyclability. This study contributes to the advancement of energy storage technologies, paving the way for the development of efficient and sustainable electrochemical energy storage devices.
利用碳纳米粒子和胶体二氧化锡量子点提高超级电容器性能
创造有效的超级电容器材料仍然是改进储能技术的首要任务。在此,我们介绍了一种由碳纳米颗粒(CNPs)和胶体二氧化锡量子点(c-SQDs)或胶体二氧化锡超小型纳米颗粒组成的新型纳米复合材料。XRD 和 XPS 分析证实了 CNP/c-SQD 纳米复合材料的成功合成及其成分。形态学研究表明,CNP 和 c-SQD 之间具有良好的分散形态和亲密的界面相互作用。具体而言,该纳米复合材料在电流密度为 1 A/g 时具有 569 F/g 的高比电容,超过了传统的碳基超级电容器。此外,该纳米复合材料还显示出卓越的稳定性,5000 次循环后容量保持率高达 99%,表明其具有出色的循环能力。这些结果凸显了 CNP/c-SQD 纳米复合材料作为高性能超级电容器应用电极材料的潜力,它具有更强的电荷存储容量、稳定性和循环性。这项研究有助于推动储能技术的发展,为开发高效、可持续的电化学储能设备铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信