{"title":"CAMERAL MEMBRANES IN THE PHRAGMOCONES OF JURASSIC AMMONITES","authors":"A. A. Mironenko, Irina A. Smurova","doi":"10.2110/palo.2023.017","DOIUrl":null,"url":null,"abstract":"\n A complex system of three-dimensional cameral membranes is known from the phragmocones of several ammonoid genera—both Paleozoic and Mesozoic. The origin and functions of these membranes remain mysterious, and their study is complicated by the absence of identical structures in modern cephalopods. Current hypotheses about the origin of cameral membranes and other organic structures of the phragmocone are mainly based on the study of Paleozoic, Triassic, and Cretaceous ammonoids. This paper examines the membranes of Subboreal Jurassic ammonites. The spatial arrangement and complexity of these membranes differ from those described earlier. It was previously assumed that three-dimensional membranes only appeared late in ammonoid ontogeny, at the end of the neanic stage. However, in the ammonites studied herein, such membranes are present starting from the second phragmocone chamber. In addition to membranes, we report other initially organic phragmocone structures of Jurassic ammonites: pseudosutures and drag lines. The discovery of a unique structure in the last phragmocone chamber of one specimen, which likely represents a fossilized set of pseudosepta, has led to a new hypothesis, that can explain the formation of all types of membranes and other initially organic phragmocone structures. According to this idea, all types of cameral sheets despite their different shapes, were formed during merging and subsequent dehydration of organic pseudosepta. Pseudosutures and drag lines are imprints of the pseudosepta margins.","PeriodicalId":54647,"journal":{"name":"Palaios","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaios","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2110/palo.2023.017","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A complex system of three-dimensional cameral membranes is known from the phragmocones of several ammonoid genera—both Paleozoic and Mesozoic. The origin and functions of these membranes remain mysterious, and their study is complicated by the absence of identical structures in modern cephalopods. Current hypotheses about the origin of cameral membranes and other organic structures of the phragmocone are mainly based on the study of Paleozoic, Triassic, and Cretaceous ammonoids. This paper examines the membranes of Subboreal Jurassic ammonites. The spatial arrangement and complexity of these membranes differ from those described earlier. It was previously assumed that three-dimensional membranes only appeared late in ammonoid ontogeny, at the end of the neanic stage. However, in the ammonites studied herein, such membranes are present starting from the second phragmocone chamber. In addition to membranes, we report other initially organic phragmocone structures of Jurassic ammonites: pseudosutures and drag lines. The discovery of a unique structure in the last phragmocone chamber of one specimen, which likely represents a fossilized set of pseudosepta, has led to a new hypothesis, that can explain the formation of all types of membranes and other initially organic phragmocone structures. According to this idea, all types of cameral sheets despite their different shapes, were formed during merging and subsequent dehydration of organic pseudosepta. Pseudosutures and drag lines are imprints of the pseudosepta margins.
期刊介绍:
PALAIOS is a monthly journal, founded in 1986, dedicated to emphasizing the impact of life on Earth''s history as recorded in the paleontological and sedimentological records. PALAIOS disseminates information to an international spectrum of geologists and biologists interested in a broad range of topics, including, but not limited to, biogeochemistry, ichnology, paleoclimatology, paleoecology, paleoceanography, sedimentology, stratigraphy, geomicrobiology, paleobiogeochemistry, and astrobiology.
PALAIOS publishes original papers that emphasize using paleontology to answer important geological and biological questions that further our understanding of Earth history. Accordingly, manuscripts whose subject matter and conclusions have broader geologic implications are much more likely to be selected for publication. Given that the purpose of PALAIOS is to generate enthusiasm for paleontology among a broad spectrum of readers, the editors request the following: titles that generate immediate interest; abstracts that emphasize important conclusions; illustrations of professional caliber used in place of words; and lively, yet scholarly, text.