Swapnil Sanjay Karade, Raghunandan Sharma, Martin Aage Barsøe Hedegaard, Shuang Ma Andersen
{"title":"Stepwise Understanding on Hydrolysis Formation of the IrOx Nanoparticles as Highly Active Electrocatalyst for Oxygen Evolution Reaction","authors":"Swapnil Sanjay Karade, Raghunandan Sharma, Martin Aage Barsøe Hedegaard, Shuang Ma Andersen","doi":"10.1007/s12678-024-00874-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we have investigated the synthesis of supported iridium oxide (IrO<sub>x</sub>) nanoparticles (NPs) through hydrolysis in a surfactant-free aqueous bath as a possible route for the large-scale production of highly active electrocatalyst for oxygen evolution reaction (OER) in acidic water electrolyzers. The process involves (i) formation of Ir-hydroxides complex from an Ir precursor in basic media followed by (ii) protonation in acidic media to form colloidal hydrated IrO<sub>x</sub> NPs and (iii) conversion and deposition of IrO<sub>x</sub> NPs on the surface of carbon or TiN support by probe sonication. The IrO<sub>x</sub> NPs produced through hydrolysis route form highly stable colloidal solution. Since it is essential to precipitate the catalyst NPs from the colloidal solution for their use in water electrolyzer electrode development, here, we investigate the optimal reaction conditions, e.g., pH, temperature, time, and presence of support, for efficient synthesis of the catalyst NPs. The reaction intermediates formed at different reaction steps are explored to get insights into the chemistry of the process. Under the optimal synthesis conditions, 100% precipitation of IrO<sub>x</sub> NPs was achieved. Further, the precipitated TiN supported IrO<sub>x</sub> NPs exhibited high OER activity, superior to that of the commercial benchmark IrO<sub>2</sub> electrocatalyst. The study provides a scalable synthesis route for highly active, low Ir-content OER electrocatalysts for acidic water electrolyzers. </p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-024-00874-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-024-00874-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we have investigated the synthesis of supported iridium oxide (IrOx) nanoparticles (NPs) through hydrolysis in a surfactant-free aqueous bath as a possible route for the large-scale production of highly active electrocatalyst for oxygen evolution reaction (OER) in acidic water electrolyzers. The process involves (i) formation of Ir-hydroxides complex from an Ir precursor in basic media followed by (ii) protonation in acidic media to form colloidal hydrated IrOx NPs and (iii) conversion and deposition of IrOx NPs on the surface of carbon or TiN support by probe sonication. The IrOx NPs produced through hydrolysis route form highly stable colloidal solution. Since it is essential to precipitate the catalyst NPs from the colloidal solution for their use in water electrolyzer electrode development, here, we investigate the optimal reaction conditions, e.g., pH, temperature, time, and presence of support, for efficient synthesis of the catalyst NPs. The reaction intermediates formed at different reaction steps are explored to get insights into the chemistry of the process. Under the optimal synthesis conditions, 100% precipitation of IrOx NPs was achieved. Further, the precipitated TiN supported IrOx NPs exhibited high OER activity, superior to that of the commercial benchmark IrO2 electrocatalyst. The study provides a scalable synthesis route for highly active, low Ir-content OER electrocatalysts for acidic water electrolyzers.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.