Long Memory Time-series Model (ARFIMA) Based Modelling of Jute Prices in the Samsi Market of Malda District, West Bengal

Chowa Ram Sahu, S. Basak, Debkishore Gupta
{"title":"Long Memory Time-series Model (ARFIMA) Based Modelling of Jute Prices in the Samsi Market of Malda District, West Bengal","authors":"Chowa Ram Sahu, S. Basak, Debkishore Gupta","doi":"10.9734/jsrr/2024/v30i62078","DOIUrl":null,"url":null,"abstract":"The objective of this paper is modeling and forecasting the weekly jute prices of Samsi market in the Malda district of West Bengal in the presence of long memory process. The long memory behavior of series is investigated by the ACF plot and Hurst R/S analysis. A fractionally integrated autoregressive moving-average (ARssFIMA) model is fitted using 668 weekly data (January 2009-November 2022). This study shows the efficiencies of the Hurst exponent, GPH, Smoothed periodogram, Local Whittle, and Wavelet methods used to estimate the fractional difference parameter in the ARFIMA model. Furthermore, we compared the forecasting abilities of the ARFIMA and ARIMA models. The results show that long memory is present in the jute price series. The models selected according to each method are ARFIMA (3,0.348,0), ARFIMA (3,0.291,1), ARFIMA (2,0.487,0), ARFIMA (3,0.461,0), ARFIMA (2,0.311,0), and ARIMA (2,1,1) on the basis of minimum AIC and BIC using 534 in-sample data. Finally, the wavelet method based ARFIMA (2,0.311,0) model is found to be the best optimal model in terms of MAE, RMSE, and MAPE criteria using 134 out-of-sample data. A comparative study indicates that the forecasting performance of the ARFIMA model is strongly better than that of the ARIMA model in this regard.","PeriodicalId":16985,"journal":{"name":"Journal of Scientific Research and Reports","volume":"104 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Research and Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/jsrr/2024/v30i62078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this paper is modeling and forecasting the weekly jute prices of Samsi market in the Malda district of West Bengal in the presence of long memory process. The long memory behavior of series is investigated by the ACF plot and Hurst R/S analysis. A fractionally integrated autoregressive moving-average (ARssFIMA) model is fitted using 668 weekly data (January 2009-November 2022). This study shows the efficiencies of the Hurst exponent, GPH, Smoothed periodogram, Local Whittle, and Wavelet methods used to estimate the fractional difference parameter in the ARFIMA model. Furthermore, we compared the forecasting abilities of the ARFIMA and ARIMA models. The results show that long memory is present in the jute price series. The models selected according to each method are ARFIMA (3,0.348,0), ARFIMA (3,0.291,1), ARFIMA (2,0.487,0), ARFIMA (3,0.461,0), ARFIMA (2,0.311,0), and ARIMA (2,1,1) on the basis of minimum AIC and BIC using 534 in-sample data. Finally, the wavelet method based ARFIMA (2,0.311,0) model is found to be the best optimal model in terms of MAE, RMSE, and MAPE criteria using 134 out-of-sample data. A comparative study indicates that the forecasting performance of the ARFIMA model is strongly better than that of the ARIMA model in this regard.
基于长记忆时间序列模型(ARFIMA)的西孟加拉邦马尔达县 Samsi 市场黄麻价格模型
本文旨在对存在长记忆过程的西孟加拉邦马尔达地区 Samsi 市场每周黄麻价格进行建模和预测。通过 ACF 图和 Hurst R/S 分析研究了序列的长记忆行为。使用 668 个周数据(2009 年 1 月至 2022 年 11 月)拟合了分数积分自回归移动平均(ARssFIMA)模型。本研究显示了赫斯特指数法、GPH 法、平滑周期图法、局部惠特尔法和小波法用于估计 ARFIMA 模型中分数差参数的效率。此外,我们还比较了 ARFIMA 模型和 ARIMA 模型的预测能力。结果表明,黄麻价格序列中存在长记忆。利用 534 个样本数据,在 AIC 和 BIC 最小的基础上,根据每种方法选出的模型分别为 ARFIMA (3,0.348,0)、ARFIMA (3,0.291,1)、ARFIMA (2,0.487,0)、ARFIMA (3,0.461,0)、ARFIMA (2,0.311,0) 和 ARIMA (2,1,1)。最后,使用 134 个样本外数据,发现基于小波方法的 ARFIMA (2,0.311,0) 模型在 MAE、RMSE 和 MAPE 标准方面是最佳模型。比较研究表明,在这方面,ARFIMA 模型的预测性能明显优于 ARIMA 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信