Two-Point Polynomial Patterns in Subsets of Positive Density in $\mathbb{R}^{n}$

Pub Date : 2024-05-21 DOI:10.1093/imrn/rnae108
Xuezhi Chen, Changxing Miao
{"title":"Two-Point Polynomial Patterns in Subsets of Positive Density in $\\mathbb{R}^{n}$","authors":"Xuezhi Chen, Changxing Miao","doi":"10.1093/imrn/rnae108","DOIUrl":null,"url":null,"abstract":"\n Let $\\gamma (t)=(P_{1}(t),\\ldots ,P_{n}(t))$ where $P_{i}$ is a real polynomial with zero constant term for each $1\\leq i\\leq n$. We will show the existence of the configuration $\\{x,x+\\gamma (t)\\}$ in sets of positive density $\\epsilon $ in $[0,1]^{n}$ with a gap estimate $t\\geq \\delta (\\epsilon )$ when $P_{i}$’s are arbitrary, and in $[0,N]^{n}$ with a gap estimate $t\\geq \\delta (\\epsilon )N^{n}$ when $P_{i}$’s are of distinct degrees where $\\delta (\\epsilon )=\\exp \\left (-\\exp \\left (c\\epsilon ^{-4}\\right )\\right )$ and $c$ only depends on $\\gamma $. To prove these two results, decay estimates of certain oscillatory integral operators and Bourgain’s reduction are primarily utilised. For the first result, dimension-reducing arguments are also required to handle the linear dependency. For the second one, we will prove a stronger result instead, since then an anisotropic rescaling is allowed in the proof to eliminate the dependence of the decay estimate on $N$. And as a byproduct, using the strategy token to prove the latter case, we extend the corner-type Roth theorem previously proven by the first author and Guo.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\gamma (t)=(P_{1}(t),\ldots ,P_{n}(t))$ where $P_{i}$ is a real polynomial with zero constant term for each $1\leq i\leq n$. We will show the existence of the configuration $\{x,x+\gamma (t)\}$ in sets of positive density $\epsilon $ in $[0,1]^{n}$ with a gap estimate $t\geq \delta (\epsilon )$ when $P_{i}$’s are arbitrary, and in $[0,N]^{n}$ with a gap estimate $t\geq \delta (\epsilon )N^{n}$ when $P_{i}$’s are of distinct degrees where $\delta (\epsilon )=\exp \left (-\exp \left (c\epsilon ^{-4}\right )\right )$ and $c$ only depends on $\gamma $. To prove these two results, decay estimates of certain oscillatory integral operators and Bourgain’s reduction are primarily utilised. For the first result, dimension-reducing arguments are also required to handle the linear dependency. For the second one, we will prove a stronger result instead, since then an anisotropic rescaling is allowed in the proof to eliminate the dependence of the decay estimate on $N$. And as a byproduct, using the strategy token to prove the latter case, we extend the corner-type Roth theorem previously proven by the first author and Guo.
分享
查看原文
$\mathbb{R}^{n}$中正密度子集的两点多项式模式
让 $\gamma (t)=(P_{1}(t),\ldots ,P_{n}(t))$,其中 $P_{i}$ 是实多项式,对于每个 $1\leq i\leq n$,常数项为零。我们将证明,当 $P_{i}$ 的值为任意值时,在 $[0,1]^{n}$ 的正密度 $\epsilon $ 集合中存在配置 $\{x,x+\gamma (t)\}$,且间隙估计值为 $t\geq \delta (\epsilon)$;在 $[0、N]^{n}$中,当$P_{i}$的度数不同时,差距估计值为$t\geq \delta (\epsilon )N^{n}$ ,其中$delta (\epsilon )=\exp \left (-\exp \left (c\epsilon ^{-4}\right )\right )$,而$c$只取决于$\gamma$。为了证明这两个结果,我们主要利用了某些振荡积分算子的衰减估计和布尔甘还原法。对于第一个结果,还需要降维论证来处理线性依赖关系。对于第二个结果,我们将证明一个更强的结果,因为在证明中允许各向异性的重缩放,以消除衰减估计值对 $N$ 的依赖。作为副产品,利用证明后一种情况的策略,我们扩展了第一作者和郭先前证明的角型罗斯定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信