{"title":"Diabetes Prediction: Optimization of Machine Learning through Feature Selection and Dimensionality Reduction","authors":"abdlhakim aouragh, Mohamed Bahaj, Fouad Toufik","doi":"10.3991/ijoe.v20i08.47765","DOIUrl":null,"url":null,"abstract":"Diabetes, a pervasive global health concern, presents diagnostic challenges due to its nuanced onset and far-reaching implications. Traditional diagnostic approaches, reliant on time-consuming assessments, necessitate a paradigm shift towards more efficient methodologies. In response, this study introduces a diagnostic support system leveraging the power of optimized machine learning algorithms. Addressing class imbalance within a dataset comprising 768 records, our methodology intricately weaves together feature selection, dimensionality reduction techniques, and grid search optimization. Specifically, the Extra Trees model, fine-tuned via grid search, emerges as the most potent, showcasing remarkable performance metrics: an accuracy score of 92.5%, an F1-score of 93.7%, and an AUC-ROC of 92.47%. These findings underscore the pivotal role of machine learning in reshaping diabetes diagnosis, offering transformative possibilities for global healthcare enhancement.","PeriodicalId":507997,"journal":{"name":"International Journal of Online and Biomedical Engineering (iJOE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering (iJOE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v20i08.47765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes, a pervasive global health concern, presents diagnostic challenges due to its nuanced onset and far-reaching implications. Traditional diagnostic approaches, reliant on time-consuming assessments, necessitate a paradigm shift towards more efficient methodologies. In response, this study introduces a diagnostic support system leveraging the power of optimized machine learning algorithms. Addressing class imbalance within a dataset comprising 768 records, our methodology intricately weaves together feature selection, dimensionality reduction techniques, and grid search optimization. Specifically, the Extra Trees model, fine-tuned via grid search, emerges as the most potent, showcasing remarkable performance metrics: an accuracy score of 92.5%, an F1-score of 93.7%, and an AUC-ROC of 92.47%. These findings underscore the pivotal role of machine learning in reshaping diabetes diagnosis, offering transformative possibilities for global healthcare enhancement.