Evaluating Offshore Electricity Market Design Considering Endogenous Infrastructure Investments: Zonal or Nodal?

Michiel Kenis;Vladimir Dvorkin;Tim Schittekatte;Kenneth Bruninx;Erik Delarue;Audun Botterud
{"title":"Evaluating Offshore Electricity Market Design Considering Endogenous Infrastructure Investments: Zonal or Nodal?","authors":"Michiel Kenis;Vladimir Dvorkin;Tim Schittekatte;Kenneth Bruninx;Erik Delarue;Audun Botterud","doi":"10.1109/TEMPR.2024.3399611","DOIUrl":null,"url":null,"abstract":"Policy makers are formulating offshore energy infrastructure plans, including wind turbines, electrolyzers, and HVDC transmission lines. An effective market design is crucial to guide cost-efficient investments and dispatch decisions. This paper jointly studies the impact of offshore market design choices on the investment in offshore electrolyzers and HVDC transmission capacity. We present a bilevel model that incorporates investments in offshore energy infrastructure, day-ahead market dispatch, and potential redispatch actions near real-time to ensure transmission constraints are respected. Our findings demonstrate that full nodal pricing, i.e., nodal pricing both onshore and offshore, outperforms the onshore zonal combined with offshore nodal pricing or offshore zonal layouts. While combining onshore zonal with offshore nodal pricing can be considered as a second-best option, it generally diminishes the profitability of offshore wind farms. However, if investment costs of offshore electrolyzers are relatively low, they can serve as catalysts to increase the revenues of the offshore wind farms. This study contributes to the understanding of market designs for highly interconnected offshore power systems, offering insights into the impact of congestion pricing methodologies on investment decisions. Besides, it is useful towards understanding the interaction of offshore loads like electrolyzers with financial support mechanisms for offshore wind farms.","PeriodicalId":100639,"journal":{"name":"IEEE Transactions on Energy Markets, Policy and Regulation","volume":"2 4","pages":"476-487"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Energy Markets, Policy and Regulation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10530165/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Policy makers are formulating offshore energy infrastructure plans, including wind turbines, electrolyzers, and HVDC transmission lines. An effective market design is crucial to guide cost-efficient investments and dispatch decisions. This paper jointly studies the impact of offshore market design choices on the investment in offshore electrolyzers and HVDC transmission capacity. We present a bilevel model that incorporates investments in offshore energy infrastructure, day-ahead market dispatch, and potential redispatch actions near real-time to ensure transmission constraints are respected. Our findings demonstrate that full nodal pricing, i.e., nodal pricing both onshore and offshore, outperforms the onshore zonal combined with offshore nodal pricing or offshore zonal layouts. While combining onshore zonal with offshore nodal pricing can be considered as a second-best option, it generally diminishes the profitability of offshore wind farms. However, if investment costs of offshore electrolyzers are relatively low, they can serve as catalysts to increase the revenues of the offshore wind farms. This study contributes to the understanding of market designs for highly interconnected offshore power systems, offering insights into the impact of congestion pricing methodologies on investment decisions. Besides, it is useful towards understanding the interaction of offshore loads like electrolyzers with financial support mechanisms for offshore wind farms.
评估考虑内生基础设施投资的离岸电力市场设计:分区还是节点?
决策者正在制定海上能源基础设施计划,包括风力涡轮机、电解槽和高压直流输电线路。有效的市场设计对于指导具有成本效益的投资和调度决策至关重要。本文共同研究了离岸市场设计选择对离岸电解槽和高压直流输电能力投资的影响。我们提出了一个双层模型,该模型包含离岸能源基础设施投资、日前市场调度和近实时的潜在重新调度行动,以确保输电约束得到遵守。我们的研究结果表明,完全节点定价(即陆上和离岸节点定价)优于陆上分区结合离岸节点定价或离岸分区布局。虽然将陆上区域定价与海上节点定价相结合可被视为次优选择,但通常会降低海上风电场的盈利能力。不过,如果海上电解槽的投资成本相对较低,则可作为催化剂增加海上风电场的收入。本研究有助于理解高度互联的海上电力系统的市场设计,深入探讨拥堵定价方法对投资决策的影响。此外,它还有助于理解电解槽等海上负载与海上风电场金融支持机制之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信