{"title":"Functionalized polypropylene separator coated with polyether/polyester blend for high-performance lithium metal batteries","authors":"Weixin Ye, Zixin Fan, Xingping Zhou, Zhigang Xue","doi":"10.20517/energymater.2023.129","DOIUrl":null,"url":null,"abstract":"Commercial polyolefin separators used in lithium metal batteries (LMBs) have the disadvantages of insufficient thermal stability and poor wettability with electrolytes, which causes bad safety and battery performance. Poly(ε-caprolactone) (PCL)-based electrolytes have drawn widespread attention in the field of polymer electrolytes owing to their electrochemical stability and high lithium-ion transference number. This work proposes a strategy of functionalizing commercial polypropylene (PP) separator coated by blending PCL (M w ~ 50,000) and poly(ethylene oxide) (PEO, M V ~ 600,000). Compared to commercial PP separators, PP-blended PEO60w/PCL5w separators possess better wettability with electrolytes and electrochemical performances. The initial discharge specific capacity of LiFePO4-based LMBs assembled with PP-blended PEO60w/PCL5w separators reaches 144 mAh g-1 (1C) and 103 mAh g-1 (5C) at room temperature, respectively. Notably, Li/PP-blended PEO60w/PCL5w/LiFePO4 shows an improved capacity retention rate of 77% after 800 cycles, confirming that the functionalized separator with coated PEO/PCL blend has great potential for application in the field of LMBs.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"41 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2023.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Commercial polyolefin separators used in lithium metal batteries (LMBs) have the disadvantages of insufficient thermal stability and poor wettability with electrolytes, which causes bad safety and battery performance. Poly(ε-caprolactone) (PCL)-based electrolytes have drawn widespread attention in the field of polymer electrolytes owing to their electrochemical stability and high lithium-ion transference number. This work proposes a strategy of functionalizing commercial polypropylene (PP) separator coated by blending PCL (M w ~ 50,000) and poly(ethylene oxide) (PEO, M V ~ 600,000). Compared to commercial PP separators, PP-blended PEO60w/PCL5w separators possess better wettability with electrolytes and electrochemical performances. The initial discharge specific capacity of LiFePO4-based LMBs assembled with PP-blended PEO60w/PCL5w separators reaches 144 mAh g-1 (1C) and 103 mAh g-1 (5C) at room temperature, respectively. Notably, Li/PP-blended PEO60w/PCL5w/LiFePO4 shows an improved capacity retention rate of 77% after 800 cycles, confirming that the functionalized separator with coated PEO/PCL blend has great potential for application in the field of LMBs.