{"title":"Kinetics of HCP-BCC Phase Transition Boundary in Magnesium at High Pressure","authors":"N. Daphalapurkar","doi":"10.3390/met14060609","DOIUrl":null,"url":null,"abstract":"Under high pressures, many crystalline metals undergo solid–solid phase transformations. In order to accurately model the behavior of materials under extreme loading conditions, it is essential to understand the kinetics of phase transition. Using molecular dynamics simulations, this work demonstrates the feasibility of characterizing the speeds of a moving phase boundary using atomistic simulations employing a suitable empirical potential for single-crystal magnesium. The model can provide temperature- and tensorial stress-dependent velocity of a moving phase boundary as a rate-limiting contribution to the kinetics of phase transformation in continuum codes. Results demonstrate that a nonlinear interaction exists between plasticity and phase transition, facilitating a jump in the velocity of a moving phase boundary, facilitated by activated plastic deformation mechanisms.","PeriodicalId":510812,"journal":{"name":"Metals","volume":"3 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/met14060609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Under high pressures, many crystalline metals undergo solid–solid phase transformations. In order to accurately model the behavior of materials under extreme loading conditions, it is essential to understand the kinetics of phase transition. Using molecular dynamics simulations, this work demonstrates the feasibility of characterizing the speeds of a moving phase boundary using atomistic simulations employing a suitable empirical potential for single-crystal magnesium. The model can provide temperature- and tensorial stress-dependent velocity of a moving phase boundary as a rate-limiting contribution to the kinetics of phase transformation in continuum codes. Results demonstrate that a nonlinear interaction exists between plasticity and phase transition, facilitating a jump in the velocity of a moving phase boundary, facilitated by activated plastic deformation mechanisms.