A transfer learning-based hybrid model with LightGBM for smart grid short-term energy load prediction

Sarita Simaiya, Mamta Dahiya, Shilpi Tomar, Neetu Faujdar, Yogesh Kumar Sharma, Nasratullah Nuristani
{"title":"A transfer learning-based hybrid model with LightGBM for smart grid short-term energy load prediction","authors":"Sarita Simaiya, Mamta Dahiya, Shilpi Tomar, Neetu Faujdar, Yogesh Kumar Sharma, Nasratullah Nuristani","doi":"10.1177/01445987241256472","DOIUrl":null,"url":null,"abstract":"Efficient energy management is crucial given 2024's 4.1% worldwide electricity demand increase. This urgency emphasizes the necessity for various, sustainable energy sources in distribution grids. Short-term load prediction approaches using probabilistic power generation and energy storage are crucial for energy usage prediction. Urban energy planners use simulation, probability optimization and modelling to create sustainable energy systems. This study offers a novel hybrid model for smart grids: short-term energy load prediction using transfer learning (TL) and optimized lightGBM (OLGBM). Our two-phase solution tackles Short-term Load Forecasting complexities. First, aberrant supplements and quick deviation selection eliminate missing values and identify key features during data pre-processing. Second, TL-OLGBM learns dynamic time scales and complex data patterns with Bayesian optimization of hyperparameters to improve forecasting accuracy. Additionally, our architecture easily combines the newest Smart and Green Technology, enabling energy system innovation. Comparative performance research shows that our technique outperforms similar models in mean absolute percentage error, accuracy and root mean square error. This hybrid model is a reliable short-term energy load forecast solution that fits the dynamic terrain of smart and green technology integration in modern energy systems.","PeriodicalId":444405,"journal":{"name":"Energy Exploration & Exploitation","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01445987241256472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient energy management is crucial given 2024's 4.1% worldwide electricity demand increase. This urgency emphasizes the necessity for various, sustainable energy sources in distribution grids. Short-term load prediction approaches using probabilistic power generation and energy storage are crucial for energy usage prediction. Urban energy planners use simulation, probability optimization and modelling to create sustainable energy systems. This study offers a novel hybrid model for smart grids: short-term energy load prediction using transfer learning (TL) and optimized lightGBM (OLGBM). Our two-phase solution tackles Short-term Load Forecasting complexities. First, aberrant supplements and quick deviation selection eliminate missing values and identify key features during data pre-processing. Second, TL-OLGBM learns dynamic time scales and complex data patterns with Bayesian optimization of hyperparameters to improve forecasting accuracy. Additionally, our architecture easily combines the newest Smart and Green Technology, enabling energy system innovation. Comparative performance research shows that our technique outperforms similar models in mean absolute percentage error, accuracy and root mean square error. This hybrid model is a reliable short-term energy load forecast solution that fits the dynamic terrain of smart and green technology integration in modern energy systems.
基于迁移学习的混合模型与 LightGBM 用于智能电网短期能源负荷预测
鉴于 2024 年全球电力需求将增长 4.1%,高效的能源管理至关重要。这种紧迫性强调了在配电网中使用各种可持续能源的必要性。使用概率发电和储能的短期负荷预测方法对能源使用预测至关重要。城市能源规划者利用模拟、概率优化和建模来创建可持续能源系统。本研究为智能电网提供了一种新颖的混合模型:利用迁移学习(TL)和优化光GBM(OLGBM)进行短期能源负荷预测。我们的两阶段解决方案解决了短期负荷预测的复杂性。首先,在数据预处理过程中,异常补充和快速偏差选择可消除缺失值并识别关键特征。其次,TL-OLGBM 通过贝叶斯优化超参数来学习动态时间尺度和复杂数据模式,从而提高预测精度。此外,我们的架构还能轻松结合最新的智能和绿色技术,实现能源系统的创新。性能对比研究表明,我们的技术在平均绝对百分比误差、准确性和均方根误差方面都优于同类模型。这种混合模型是一种可靠的短期能源负荷预测解决方案,适合现代能源系统中智能和绿色技术集成的动态环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信