Optimal control of maximum torque current ratio for synchronous reluctance motor based on virtual signal injection algorithm

IF 1.2 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinghua Cui
{"title":"Optimal control of maximum torque current ratio for synchronous reluctance motor based on virtual signal injection algorithm","authors":"Jinghua Cui","doi":"10.24425/aee.2024.149926","DOIUrl":null,"url":null,"abstract":"This study focuses on the maximum torque current ratio control of synchronous reluctance motors and proposes an optimized control method for the maximum torque current ratio of synchronous reluctance motors based on virtual signal injection. Firstly, the research on the maximum torque current ratio control of synchronous reluctance motors based on the virtual signal injection method is conducted, and the existing virtual unipolar square wave signal injection method is analyzed and studied. Secondly, a non-parametric maximum torque current ratio control strategy based on a synchronous reluctance motor combined with the virtual signal injection method is proposed. This strategy does not involve complex parameter calculations, and the control accuracy is not limited by the accuracy of the parameters in the model. The experimental results showed that under the control of virtual bipolar and unipolar square wave signal injection methods, the load torque was converted from 2 Nm to 6 Nm at t = 2:5 s, and there was a significant change in the current amplitude and waveform of the current vector. Under the control of the bipolar injection method, the current amplitude waveform of the motor was lower than that of the unipolar waveform, and the current was smaller. After the load suddenly changed, it could enter a stable state faster. After the load changed at t = 2:5 s, the phase angle of the current vector was quickly adjusted and stabilized under the control of the bipolar signal. The designed method has a good optimization effect compared to the traditional virtual signal injection method, and can achieve high-performance maximum torque current ratio optimization control on synchronous reluctance motors.","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/aee.2024.149926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the maximum torque current ratio control of synchronous reluctance motors and proposes an optimized control method for the maximum torque current ratio of synchronous reluctance motors based on virtual signal injection. Firstly, the research on the maximum torque current ratio control of synchronous reluctance motors based on the virtual signal injection method is conducted, and the existing virtual unipolar square wave signal injection method is analyzed and studied. Secondly, a non-parametric maximum torque current ratio control strategy based on a synchronous reluctance motor combined with the virtual signal injection method is proposed. This strategy does not involve complex parameter calculations, and the control accuracy is not limited by the accuracy of the parameters in the model. The experimental results showed that under the control of virtual bipolar and unipolar square wave signal injection methods, the load torque was converted from 2 Nm to 6 Nm at t = 2:5 s, and there was a significant change in the current amplitude and waveform of the current vector. Under the control of the bipolar injection method, the current amplitude waveform of the motor was lower than that of the unipolar waveform, and the current was smaller. After the load suddenly changed, it could enter a stable state faster. After the load changed at t = 2:5 s, the phase angle of the current vector was quickly adjusted and stabilized under the control of the bipolar signal. The designed method has a good optimization effect compared to the traditional virtual signal injection method, and can achieve high-performance maximum torque current ratio optimization control on synchronous reluctance motors.
基于虚拟信号注入算法的同步磁阻电机最大转矩电流比优化控制
本研究以同步磁阻电机的最大转矩电流比控制为重点,提出了一种基于虚拟信号注入的同步磁阻电机最大转矩电流比优化控制方法。首先,对基于虚拟信号注入法的同步磁阻电机最大转矩电流比控制进行了研究,对现有的虚拟单极性方波信号注入法进行了分析和研究。其次,结合虚拟信号注入法,提出了一种基于同步磁阻电机的非参数最大转矩电流比控制策略。该策略不涉及复杂的参数计算,控制精度不受模型参数精度的限制。实验结果表明,在虚拟双极性和单极性方波信号注入方法的控制下,负载转矩在 t = 2:5 s 时由 2 Nm 转化为 6 Nm,电流幅值和电流矢量的波形也发生了显著变化。在双极注入法的控制下,电机的电流幅值波形低于单极波形,电流较小。负载突然变化后,电机能更快地进入稳定状态。负载在 t = 2:5 s 发生变化后,电流矢量的相位角在双极性信号的控制下迅速调整并稳定下来。与传统的虚拟信号注入法相比,所设计的方法具有良好的优化效果,可实现对同步磁阻电机的高性能最大转矩电流比优化控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Electrical Engineering
Archives of Electrical Engineering ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.40
自引率
53.80%
发文量
0
审稿时长
18 weeks
期刊介绍: The journal publishes original papers in the field of electrical engineering which covers, but not limited to, the following scope: - Control - Electrical machines and transformers - Electrical & magnetic fields problems - Electric traction - Electro heat - Fuel cells, micro machines, hybrid vehicles - Nondestructive testing & Nondestructive evaluation - Electrical power engineering - Power electronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信