Spectral Theorems in the Laguerre Hypergroup Setting

H. Mejjaoli, Firdous A. Shah
{"title":"Spectral Theorems in the Laguerre Hypergroup Setting","authors":"H. Mejjaoli, Firdous A. Shah","doi":"10.28919/cpr-pajm/3-13","DOIUrl":null,"url":null,"abstract":"We introduce the two-wavelet multiplier operator in the Laguerre hypergroup setting. Knowing the fact that the study of this operator are both theoretically interesting and practically useful, we investigated several subjects of spectral analysis for the new operator. Firstly, we present a comprehensive analysis of the generalized two-wavelet multiplier operator. Next, we introduce and we study the generalized Landau-PollakSlepian operator. As applications, some problems of the approximation theory and the uncertainty principles are studied. Finally, we give many results on the boundedness and compactness of the Laguerre two-wavelet multipliers on Lpα(K), 1≤p≤∞.","PeriodicalId":503253,"journal":{"name":"Pan-American Journal of Mathematics","volume":"48 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pan-American Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/cpr-pajm/3-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the two-wavelet multiplier operator in the Laguerre hypergroup setting. Knowing the fact that the study of this operator are both theoretically interesting and practically useful, we investigated several subjects of spectral analysis for the new operator. Firstly, we present a comprehensive analysis of the generalized two-wavelet multiplier operator. Next, we introduce and we study the generalized Landau-PollakSlepian operator. As applications, some problems of the approximation theory and the uncertainty principles are studied. Finally, we give many results on the boundedness and compactness of the Laguerre two-wavelet multipliers on Lpα(K), 1≤p≤∞.
拉盖尔超群背景下的谱定理
我们在拉盖尔超群设置中引入了双小波乘法算子。考虑到对这一算子的研究既有理论意义又有实用价值,我们对新算子的几个谱分析课题进行了研究。首先,我们对广义二小波乘法算子进行了全面分析。接着,我们引入并研究了广义兰道-波拉克-斯勒皮安算子。作为应用,我们研究了近似理论和不确定性原理的一些问题。最后,我们给出了许多关于 Lpα(K), 1≤p≤∞ 上拉盖尔双小波乘子的有界性和紧凑性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信