Lung Cancer Detection Systems Applied to Medical Images: A State-of-the-Art Survey

IF 9.7 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Sher Lyn Tan, Ganeshsree Selvachandran, Raveendran Paramesran, Weiping Ding
{"title":"Lung Cancer Detection Systems Applied to Medical Images: A State-of-the-Art Survey","authors":"Sher Lyn Tan,&nbsp;Ganeshsree Selvachandran,&nbsp;Raveendran Paramesran,&nbsp;Weiping Ding","doi":"10.1007/s11831-024-10141-3","DOIUrl":null,"url":null,"abstract":"<div><p>Lung cancer represents a significant global health challenge, transcending demographic boundaries of age, gender, and ethnicity. Timely detection stands as a pivotal factor for enhancing both survival rates and post-diagnosis quality of life. Artificial intelligence (AI) emerges as a transformative force with the potential to substantially enhance the accuracy and efficiency of Computer-Aided Diagnosis (CAD) systems for lung cancer. Despite the burgeoning interest, a notable gap persists in the literature concerning comprehensive reviews that delve into the intricate design and architectural facets of these systems. While existing reviews furnish valuable insights into result summaries and model attributes, a glaring absence prevails in offering a reliable roadmap to guide researchers towards optimal research directions. Addressing this gap in automated lung cancer detection within medical imaging, this survey adopts a focused approach, specifically targeting innovative models tailored solely for medical image analysis. The survey endeavors to meticulously scrutinize and merge knowledge pertaining to both the architectural components and intended functionalities of these models. In adherence to PRISMA guidelines, this survey systematically incorporates and analyzes 119 original articles spanning the years 2019–2023 sourced from Scopus and WoS-indexed repositories. The survey is underpinned by three primary areas of inquiry: the application of AI within CAD systems, the intricacies of model architectural designs, and comparative analyses of the latest advancements in lung cancer detection systems. To ensure coherence and depth in analysis, the surveyed methodologies are categorically classified into seven distinct groups based on their foundational models. Furthermore, the survey conducts a rigorous review of references and discerns trend observations concerning model designs and associated tasks. Beyond synthesizing existing knowledge, this survey serves as a guide that highlights potential avenues for further research within this critical domain. By providing comprehensive insights and facilitating informed decision-making, this survey aims to contribute to the body of knowledge in the study of automated lung cancer detection and propel advancements in the field.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"32 1","pages":"343 - 380"},"PeriodicalIF":9.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11831-024-10141-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-024-10141-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer represents a significant global health challenge, transcending demographic boundaries of age, gender, and ethnicity. Timely detection stands as a pivotal factor for enhancing both survival rates and post-diagnosis quality of life. Artificial intelligence (AI) emerges as a transformative force with the potential to substantially enhance the accuracy and efficiency of Computer-Aided Diagnosis (CAD) systems for lung cancer. Despite the burgeoning interest, a notable gap persists in the literature concerning comprehensive reviews that delve into the intricate design and architectural facets of these systems. While existing reviews furnish valuable insights into result summaries and model attributes, a glaring absence prevails in offering a reliable roadmap to guide researchers towards optimal research directions. Addressing this gap in automated lung cancer detection within medical imaging, this survey adopts a focused approach, specifically targeting innovative models tailored solely for medical image analysis. The survey endeavors to meticulously scrutinize and merge knowledge pertaining to both the architectural components and intended functionalities of these models. In adherence to PRISMA guidelines, this survey systematically incorporates and analyzes 119 original articles spanning the years 2019–2023 sourced from Scopus and WoS-indexed repositories. The survey is underpinned by three primary areas of inquiry: the application of AI within CAD systems, the intricacies of model architectural designs, and comparative analyses of the latest advancements in lung cancer detection systems. To ensure coherence and depth in analysis, the surveyed methodologies are categorically classified into seven distinct groups based on their foundational models. Furthermore, the survey conducts a rigorous review of references and discerns trend observations concerning model designs and associated tasks. Beyond synthesizing existing knowledge, this survey serves as a guide that highlights potential avenues for further research within this critical domain. By providing comprehensive insights and facilitating informed decision-making, this survey aims to contribute to the body of knowledge in the study of automated lung cancer detection and propel advancements in the field.

Abstract Image

应用于医学影像的肺癌检测系统:技术现状调查
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.80
自引率
4.10%
发文量
153
审稿时长
>12 weeks
期刊介绍: Archives of Computational Methods in Engineering Aim and Scope: Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication. Review Format: Reviews published in the journal offer: A survey of current literature Critical exposition of topics in their full complexity By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信