Design and optimization of a radial-axial hybrid excited machine with spoke-type permanent magnet rotor

IF 1.2 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Hongbo Qiu, Wenhao Gao, Shuaishuai Duan
{"title":"Design and optimization of a radial-axial hybrid excited machine with spoke-type permanent magnet rotor","authors":"Hongbo Qiu, Wenhao Gao, Shuaishuai Duan","doi":"10.24425/aee.2024.149924","DOIUrl":null,"url":null,"abstract":"To further enhance the speed regulation range of the hybrid excited machine (HEM), the structure of a magnetic ring is optimized using a combination of the magnetic circuit method (MCM) and numerical analysis method in this paper, and a disc magnetic ring (DMR) is proposed. The magnetic density distribution of the proposed disc magnetic ring hybrid excited machine (DMRHEM) is compared to the radial-axial hybrid excited machine (RAHEM), and the superiority of alleviating a saturation problem in the proposed DMRHEM is determined. To improve the power density, the spoke-type permanent magnet (PM) rotor is applied. The influence of the proposed DMR on the HEM is analyzed, and the field adjustment capability of the proposed DMRHEM is better. Based on this, by combining the bypass principle, the analytical expressions for the relations between the rotor pole-pair number and the motor axial length/stator inner diameter (MAL/SID) as well as flux regulation capability are derived to further explore the superiority of the proposed DMRHEM. The influence mechanism of the rotor pole-pair number and the MAL/SID on the proposed DRMHEM is determined. The optimal MAL/SID and pole-pair number are obtained.","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/aee.2024.149924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To further enhance the speed regulation range of the hybrid excited machine (HEM), the structure of a magnetic ring is optimized using a combination of the magnetic circuit method (MCM) and numerical analysis method in this paper, and a disc magnetic ring (DMR) is proposed. The magnetic density distribution of the proposed disc magnetic ring hybrid excited machine (DMRHEM) is compared to the radial-axial hybrid excited machine (RAHEM), and the superiority of alleviating a saturation problem in the proposed DMRHEM is determined. To improve the power density, the spoke-type permanent magnet (PM) rotor is applied. The influence of the proposed DMR on the HEM is analyzed, and the field adjustment capability of the proposed DMRHEM is better. Based on this, by combining the bypass principle, the analytical expressions for the relations between the rotor pole-pair number and the motor axial length/stator inner diameter (MAL/SID) as well as flux regulation capability are derived to further explore the superiority of the proposed DMRHEM. The influence mechanism of the rotor pole-pair number and the MAL/SID on the proposed DRMHEM is determined. The optimal MAL/SID and pole-pair number are obtained.
带辐条式永磁转子的径向-轴向混合励磁机的设计与优化
为了进一步提高混合励磁机(HEM)的调速范围,本文采用磁路法(MCM)和数值分析法相结合的方法优化了磁环结构,并提出了一种圆盘磁环(DMR)。将所提出的圆盘磁环混合励磁机(DMRHEM)的磁密度分布与径向-轴向混合励磁机(RAHEM)进行了比较,并确定了所提出的 DMRHEM 在缓解饱和问题方面的优越性。为了提高功率密度,采用了辐条式永磁(PM)转子。分析了拟议的 DMR 对 HEM 的影响,发现拟议的 DMRHEM 具有更好的磁场调节能力。在此基础上,结合旁路原理,推导出转子磁极对数与电机轴向长度/定子内径(MAL/SID)以及磁通调节能力之间关系的解析表达式,进一步探讨了所提 DMRHEM 的优越性。确定了转子极对数和 MAL/SID 对拟议 DRMHEM 的影响机制。得出了最佳 MAL/SID 和磁极对数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Electrical Engineering
Archives of Electrical Engineering ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.40
自引率
53.80%
发文量
0
审稿时长
18 weeks
期刊介绍: The journal publishes original papers in the field of electrical engineering which covers, but not limited to, the following scope: - Control - Electrical machines and transformers - Electrical & magnetic fields problems - Electric traction - Electro heat - Fuel cells, micro machines, hybrid vehicles - Nondestructive testing & Nondestructive evaluation - Electrical power engineering - Power electronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信