{"title":"Elucidating the complex interplay between thermodynamics, kinetics, and electrochemistry in battery electrodes through phase-field modeling","authors":"W. Andrews, Katsuyo Thornton","doi":"10.1557/s43577-024-00732-7","DOIUrl":null,"url":null,"abstract":"This article highlights applications of phase-field modeling to electrochemical systems, with a focus on battery electrodes. We first provide an overview on the physical processes involved in electrochemical systems and applications of the phase-field approach to understand the thermodynamic and kinetic mechanisms underlying these processes. We employ two examples to highlight how realistic thermodynamics and kinetics can naturally be incorporated into phase-field modeling of electrochemical processes. One is a composite battery cathode with an intercalation compound (LixFePO4) as the electrochemically active material, and the other is a displacement reaction compound (Li–Cu–TiS2). With the input parameters mostly from atomistic calculations and experimental measurements, phase-field simulations allowed us to untangle the interactions among transport, reaction, electricity, chemistry, and thermodynamics that lead to highly complex evolution of the materials within battery electrodes. The implications of these observations for battery performance and degradation are discussed.\n Graphical abstract","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"46 24","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-024-00732-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article highlights applications of phase-field modeling to electrochemical systems, with a focus on battery electrodes. We first provide an overview on the physical processes involved in electrochemical systems and applications of the phase-field approach to understand the thermodynamic and kinetic mechanisms underlying these processes. We employ two examples to highlight how realistic thermodynamics and kinetics can naturally be incorporated into phase-field modeling of electrochemical processes. One is a composite battery cathode with an intercalation compound (LixFePO4) as the electrochemically active material, and the other is a displacement reaction compound (Li–Cu–TiS2). With the input parameters mostly from atomistic calculations and experimental measurements, phase-field simulations allowed us to untangle the interactions among transport, reaction, electricity, chemistry, and thermodynamics that lead to highly complex evolution of the materials within battery electrodes. The implications of these observations for battery performance and degradation are discussed.
Graphical abstract
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.