Toward Long-Life Lithium Metal Anode by a Li3N-Rich Architecture with Grafted Li Reservoirs

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xuekai Zhu, Fangmin Ye*, Fuliang Xu, Yongming Jiang, Shuling Fan and Meinan Liu*, 
{"title":"Toward Long-Life Lithium Metal Anode by a Li3N-Rich Architecture with Grafted Li Reservoirs","authors":"Xuekai Zhu,&nbsp;Fangmin Ye*,&nbsp;Fuliang Xu,&nbsp;Yongming Jiang,&nbsp;Shuling Fan and Meinan Liu*,&nbsp;","doi":"10.1021/acsaem.4c00365","DOIUrl":null,"url":null,"abstract":"<p >Lithium (Li) metal anodes (LMA) are regarded as one of the most promising anode candidates due to their high theoretical capacity; however, Li dendrites and the volume expansion issues make their practical application very challenging. Herein, a lightweight and high nitrogen (N)-doped carbon fiber with grafted sphere-like carbon nanotubes (HN-SCNTgCFs) has been successfully fabricated as a Li platting matrix by a two-step strategy of surface engineering including solid resource assisted chemical vapor deposition (solid-CVD) and subsequent electrochemical conversion. Benefitting from this HN-SCNTgCF matrix with a fast Li<sup>+</sup> conductor (Li<sub>3</sub>N), the HN-SCNTgCFs || Li system behaves completely stable, i.e., 900 cycles with a CE of ∼100%; the quasi-Li-anode-free HN-SCNTgCFs || LiFePO<sub>4</sub> (LFP) cell delivers a long lifespan of 800 cycles; and the Li-HN-SCNTgCFs || LFP cell exhibits long cycling stability (1000 cycles) with a low capacity decay of 0.057 mA h g<sup>–1</sup> per cycle. These excellent results suggest that surface engineering is a feasible strategy for constructing an effective Li matrix to stabilize LMA.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 11","pages":"4725–4732"},"PeriodicalIF":5.5000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c00365","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium (Li) metal anodes (LMA) are regarded as one of the most promising anode candidates due to their high theoretical capacity; however, Li dendrites and the volume expansion issues make their practical application very challenging. Herein, a lightweight and high nitrogen (N)-doped carbon fiber with grafted sphere-like carbon nanotubes (HN-SCNTgCFs) has been successfully fabricated as a Li platting matrix by a two-step strategy of surface engineering including solid resource assisted chemical vapor deposition (solid-CVD) and subsequent electrochemical conversion. Benefitting from this HN-SCNTgCF matrix with a fast Li+ conductor (Li3N), the HN-SCNTgCFs || Li system behaves completely stable, i.e., 900 cycles with a CE of ∼100%; the quasi-Li-anode-free HN-SCNTgCFs || LiFePO4 (LFP) cell delivers a long lifespan of 800 cycles; and the Li-HN-SCNTgCFs || LFP cell exhibits long cycling stability (1000 cycles) with a low capacity decay of 0.057 mA h g–1 per cycle. These excellent results suggest that surface engineering is a feasible strategy for constructing an effective Li matrix to stabilize LMA.

Abstract Image

Abstract Image

通过富含 Li3N 的结构与接枝锂储层实现长寿命锂金属负极
锂(Li)金属阳极(LMA)因其理论容量高而被视为最有前途的阳极候选材料之一;然而,锂枝晶和体积膨胀问题使其实际应用面临巨大挑战。在本文中,通过两步表面工程策略(包括固体资源辅助化学气相沉积(solid-CVD)和随后的电化学转换),成功制备了一种具有接枝球状碳纳米管(HN-SCNTgCFs)的轻质高氮(N)掺杂碳纤维,作为锂镀层基质。由于这种 HN-SCNTgCF 基体具有快速 Li+ 导体 (Li3N),因此 HN-SCNTgCFs || Li 系统表现完全稳定,也就是说,在 900 个循环周期中,CE 值为 ∼ 0.5、900 个循环,CE ∼100%;准无锂阳极 HN-SCNTgCFs || LiFePO4 (LFP) 电池的寿命长达 800 个循环;Li-HN-SCNTgCFs || LFP 电池表现出长期循环稳定性(1000 个循环),容量衰减较低,每个循环为 0.057 mA h g-1。这些优异的结果表明,表面工程是构建有效锂基质以稳定 LMA 的可行策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
文献相关原料
公司名称
产品信息
麦克林
dicyandiamide (DCD)
麦克林
itaconic acid (IA)
麦克林
Ni(Ac)2·4H2O
阿拉丁
N-methylpyrrolidone (NMP)
阿拉丁
N,N-Dimethylformamide (DMF)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信