A decomposition theorem for unitary group representations on Kaplansky–Hilbert modules and the Furstenberg–Zimmer structure theorem

IF 0.6 3区 数学 Q3 MATHEMATICS
N. Edeko, M. Haase, H. Kreidler
{"title":"A decomposition theorem for unitary group representations on Kaplansky–Hilbert modules and the Furstenberg–Zimmer structure theorem","authors":"N. Edeko,&nbsp;M. Haase,&nbsp;H. Kreidler","doi":"10.1007/s10476-024-00020-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a decomposition theorem for (covariant) unitary\ngroup representations on Kaplansky–Hilbert modules over Stone algebras is established,\nwhich generalizes the well-known Hilbert space case (where it coincides\nwith the decomposition of Jacobs, deLeeuw and Glicksberg).</p><p>The proof rests heavily on the operator theory on Kaplansky–Hilbert modules,\nin particular the spectral theorem for Hilbert–Schmidt homomorphisms on\nsuch modules.</p><p>As an application, a generalization of the celebrated Furstenberg–Zimmer\nstructure theorem to the case of measure-preserving actions of arbitrary groups\non arbitrary probability spaces is established.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00020-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a decomposition theorem for (covariant) unitary group representations on Kaplansky–Hilbert modules over Stone algebras is established, which generalizes the well-known Hilbert space case (where it coincides with the decomposition of Jacobs, deLeeuw and Glicksberg).

The proof rests heavily on the operator theory on Kaplansky–Hilbert modules, in particular the spectral theorem for Hilbert–Schmidt homomorphisms on such modules.

As an application, a generalization of the celebrated Furstenberg–Zimmer structure theorem to the case of measure-preserving actions of arbitrary groups on arbitrary probability spaces is established.

卡普兰斯基-希尔伯特模块上单元群表示的分解定理和弗斯滕贝格-齐美尔结构定理
本文建立了斯通代数上卡普兰斯基-希尔伯特模块上(协变)单元群表示的分解定理,该定理推广了著名的希尔伯特空间情况(与雅各布斯、德利乌和格里克斯伯格的分解不谋而合)。该证明在很大程度上依赖于关于卡普兰斯基-希尔伯特模块的算子理论,特别是关于这类模块上希尔伯特-施密特同态的谱定理。作为应用,著名的弗斯滕伯格-齐美尔结构定理被推广到任意群在任意概率空间上的度量保全作用的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信