{"title":"A REMARK ON THE N-INVARIANT GEOMETRY OF BOUNDED HOMOGENEOUS DOMAINS","authors":"L. Geatti, A. Iannuzzi","doi":"10.1017/nmj.2024.12","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000126_inline1.png\"/>\n\t\t<jats:tex-math>\n$\\mathbf {D}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be a bounded homogeneous domain in <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000126_inline2.png\"/>\n\t\t<jats:tex-math>\n${\\mathbb {C}}^n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. In this note, we give a characterization of the Stein domains in <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000126_inline3.png\"/>\n\t\t<jats:tex-math>\n$\\mathbf {D}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> which are invariant under a maximal unipotent subgroup <jats:italic>N</jats:italic> of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000126_inline4.png\"/>\n\t\t<jats:tex-math>\n$Aut(\\mathbf {D})$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. We also exhibit an <jats:italic>N</jats:italic>-invariant potential of the Bergman metric of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000126_inline5.png\"/>\n\t\t<jats:tex-math>\n$\\mathbf {D}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, expressed in a Lie theoretical fashion. These results extend the ones previously obtained by the authors in the symmetric case.</jats:p>","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2024.12","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let
$\mathbf {D}$
be a bounded homogeneous domain in
${\mathbb {C}}^n$
. In this note, we give a characterization of the Stein domains in
$\mathbf {D}$
which are invariant under a maximal unipotent subgroup N of
$Aut(\mathbf {D})$
. We also exhibit an N-invariant potential of the Bergman metric of
$\mathbf {D}$
, expressed in a Lie theoretical fashion. These results extend the ones previously obtained by the authors in the symmetric case.
期刊介绍:
The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.