Life prediction method of rolling bearing based on CNN-LSTM-AM

IF 0.7 Q4 ENGINEERING, MECHANICAL
Wanqing Huang, Yang Chen, Yongqi Chen, Tao Zhang
{"title":"Life prediction method of rolling bearing based on CNN-LSTM-AM","authors":"Wanqing Huang, Yang Chen, Yongqi Chen, Tao Zhang","doi":"10.21595/jve.2024.23793","DOIUrl":null,"url":null,"abstract":"Bearing is the key component to determine the health of machinery, and it is of great significance to monitor its working status in real time and predict its remaining useful life. In recent years, the RUL prediction method based on deep learning has been widely used and achieved good prediction results. Here, a bearing life prediction method based on convolution neural network (CNN), long short term memory (LSTM) and attention mechanism (AM) is proposed. First of all, the time domain and frequency domain features of the original vibration signals of rolling bearings are extracted, and the extracted feature set is normalized as the input of CNN. The main function of CNN is to extract spatial features and reduce the dimension of the data. Then, using LSTM to extract the information that may be ignored by CNN, the feature information extracted by CNN-LSTM is input to the attention mechanism for weighting, and the key information is screened. And then more accurately represent the degradation characteristics of the equipment, and finally get the bearing remaining life. The performance of the model is verified by two sets of public data sets, and the experimental results show that it is compared with the CNN-LSTM method. The root mean square error (RMSE) index based on CNN-LSTM-AM method is reduced by 14.6 % and 13.8 % respectively, and the score index is increased by 2.0 % and 2.4 % respectively. The results show that the proposed method has higher accuracy in bearing RUL prediction.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibroengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/jve.2024.23793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bearing is the key component to determine the health of machinery, and it is of great significance to monitor its working status in real time and predict its remaining useful life. In recent years, the RUL prediction method based on deep learning has been widely used and achieved good prediction results. Here, a bearing life prediction method based on convolution neural network (CNN), long short term memory (LSTM) and attention mechanism (AM) is proposed. First of all, the time domain and frequency domain features of the original vibration signals of rolling bearings are extracted, and the extracted feature set is normalized as the input of CNN. The main function of CNN is to extract spatial features and reduce the dimension of the data. Then, using LSTM to extract the information that may be ignored by CNN, the feature information extracted by CNN-LSTM is input to the attention mechanism for weighting, and the key information is screened. And then more accurately represent the degradation characteristics of the equipment, and finally get the bearing remaining life. The performance of the model is verified by two sets of public data sets, and the experimental results show that it is compared with the CNN-LSTM method. The root mean square error (RMSE) index based on CNN-LSTM-AM method is reduced by 14.6 % and 13.8 % respectively, and the score index is increased by 2.0 % and 2.4 % respectively. The results show that the proposed method has higher accuracy in bearing RUL prediction.
基于 CNN-LSTM-AM 的滚动轴承寿命预测方法
轴承是决定机械健康状况的关键部件,实时监测其工作状态并预测其剩余使用寿命具有重要意义。近年来,基于深度学习的剩余寿命预测方法得到了广泛应用,并取得了良好的预测效果。本文提出了一种基于卷积神经网络(CNN)、长短期记忆(LSTM)和注意力机制(AM)的轴承寿命预测方法。首先,提取滚动轴承原始振动信号的时域和频域特征,并将提取的特征集归一化,作为 CNN 的输入。CNN 的主要功能是提取空间特征,降低数据维度。然后,利用 LSTM 提取 CNN 可能忽略的信息,将 CNN-LSTM 提取的特征信息输入注意力机制进行加权,筛选出关键信息。然后更准确地表示设备的退化特征,最终得到轴承的剩余寿命。该模型的性能通过两组公共数据集进行了验证,实验结果表明,与 CNN-LSTM 方法相比。基于 CNN-LSTM-AM 方法的均方根误差(RMSE)指数分别降低了 14.6 % 和 13.8 %,得分指数分别提高了 2.0 % 和 2.4 %。结果表明,所提出的方法在轴承 RUL 预测方面具有更高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Vibroengineering
Journal of Vibroengineering 工程技术-工程:机械
CiteScore
1.70
自引率
0.00%
发文量
97
审稿时长
4.5 months
期刊介绍: Journal of VIBROENGINEERING (JVE) ISSN 1392-8716 is a prestigious peer reviewed International Journal specializing in theoretical and practical aspects of Vibration Engineering. It is indexed in ESCI and other major databases. Published every 1.5 months (8 times yearly), the journal attracts attention from the International Engineering Community.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信