Koo‐Kleinstreuer‐Li magneto‐nanofluid model for non‐Newtonian micropolar fluid through porous channel

S. Lone, M. Bilal, Y. Mehmood, T. Sajid, M. Nadeem
{"title":"Koo‐Kleinstreuer‐Li magneto‐nanofluid model for non‐Newtonian micropolar fluid through porous channel","authors":"S. Lone, M. Bilal, Y. Mehmood, T. Sajid, M. Nadeem","doi":"10.1002/zamm.202300285","DOIUrl":null,"url":null,"abstract":"The primary concern of writing this article is to study the rheological properties of the micropolar non‐Newtonian nanofluid flowing through the porous medium along with magnetic field effects. In it, the outer boundary of the sheet is heated by applying an external heat source. The insertion of aluminum oxide nanoparticles in water turned it into a nanofluid. Together with the viscous dissipation phenomena, adding a magnetic field has another effect known as a Joule heating impact that is considered in the energy equation. To investigate the impact of viscosity and thermal conductivity on flow patterns, we considered the Koo‐Kleinstreuer‐Li model. A generalized Proudman‐Johnson equation is obtained by using similarity transformation on Navier‐Stokes equations. The well‐known classical shooting method is used to get the numerical solution to the said problem. Graphical results are portrayed for variant rheological parameters lke power law index, Reynolds number, volume fraction, Prandtl number, expansion ratio, and Hartmann number on the velocity and temperature of nanofluids.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The primary concern of writing this article is to study the rheological properties of the micropolar non‐Newtonian nanofluid flowing through the porous medium along with magnetic field effects. In it, the outer boundary of the sheet is heated by applying an external heat source. The insertion of aluminum oxide nanoparticles in water turned it into a nanofluid. Together with the viscous dissipation phenomena, adding a magnetic field has another effect known as a Joule heating impact that is considered in the energy equation. To investigate the impact of viscosity and thermal conductivity on flow patterns, we considered the Koo‐Kleinstreuer‐Li model. A generalized Proudman‐Johnson equation is obtained by using similarity transformation on Navier‐Stokes equations. The well‐known classical shooting method is used to get the numerical solution to the said problem. Graphical results are portrayed for variant rheological parameters lke power law index, Reynolds number, volume fraction, Prandtl number, expansion ratio, and Hartmann number on the velocity and temperature of nanofluids.
Koo-Kleinstreuer-Li 磁纳米流体模型用于非牛顿微多孔流体通过多孔通道
撰写本文的主要目的是研究流经多孔介质的微波非牛顿纳米流体的流变特性以及磁场效应。其中,通过外部热源加热薄片的外部边界。在水中加入氧化铝纳米粒子后,水变成了纳米流体。除了粘滞耗散现象外,加入磁场还会产生另一种效应,即焦耳热影响,这在能量方程中得到了考虑。为了研究粘度和热导率对流动模式的影响,我们考虑了 Koo-Kleinstreuer-Li 模型。通过对纳维-斯托克斯方程进行相似性转换,得到了广义的普鲁德曼-约翰逊方程。我们使用著名的经典射击法对上述问题进行数值求解。图形结果描述了不同流变参数(如幂律指数、雷诺数、体积分数、普朗特数、膨胀比和哈特曼数)对纳米流体速度和温度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信