Shuang Xia, Xiao Fu, Bin Wang, Yi Wang, Zhongqing Liu
{"title":"Enhanced water electrolysis by construction and control of nickel (cobalt) phosphide/metal interface","authors":"Shuang Xia, Xiao Fu, Bin Wang, Yi Wang, Zhongqing Liu","doi":"10.1002/jccs.202400064","DOIUrl":null,"url":null,"abstract":"<p>Using cobalt sulfate and nickel sulfate as main electrolytes, ammonium sulfate as an auxiliary electrolyte and buffer agent, and cheap iron pieces (FP) as the substrates, nickel and/or cobalt phosphide/metal heterogeneous catalytic electrode (M<sub>2</sub>P/M/FP) was grown on the substrate in situ by electrodeposition followed by low temperature phosphating. M<sub>2</sub>P/M/FP functioned as a good bifunctional electrode for HER and OER in 1 mol/L KOH, where Co<sub>2</sub>P/Co/FP needed an overpotential of 52 and 288 mV, and (NC)<sub>2</sub>P/(NC)/FP required that of 75 mV and 293 mV to afford 10 mA/cm<sup>2</sup>. Previous similar studies often ignored the role of metal and only considered the water electrolysis catalysis of metal phosphide. In this research, it was clarified that for water electrolysis, the essence of high catalysis activity of the M<sub>2</sub>P/M/FP electrode was the electronic interaction between metal and metal phosphide.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400064","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Using cobalt sulfate and nickel sulfate as main electrolytes, ammonium sulfate as an auxiliary electrolyte and buffer agent, and cheap iron pieces (FP) as the substrates, nickel and/or cobalt phosphide/metal heterogeneous catalytic electrode (M2P/M/FP) was grown on the substrate in situ by electrodeposition followed by low temperature phosphating. M2P/M/FP functioned as a good bifunctional electrode for HER and OER in 1 mol/L KOH, where Co2P/Co/FP needed an overpotential of 52 and 288 mV, and (NC)2P/(NC)/FP required that of 75 mV and 293 mV to afford 10 mA/cm2. Previous similar studies often ignored the role of metal and only considered the water electrolysis catalysis of metal phosphide. In this research, it was clarified that for water electrolysis, the essence of high catalysis activity of the M2P/M/FP electrode was the electronic interaction between metal and metal phosphide.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.