Niyomufasha Theogene, Celestin Ntivuguruzwa, L. Mugabo
{"title":"Effect of using multiple representations in teaching mechanics problem-solving on engineering students’ academic performance in Rwanda","authors":"Niyomufasha Theogene, Celestin Ntivuguruzwa, L. Mugabo","doi":"10.1088/1361-6552/ad4944","DOIUrl":null,"url":null,"abstract":"\n In recent years, the use of multiple representations in physics teaching and learning has become more common. This study sought to determine if engineering students’ performance in Rwanda might be improved by the use of numerous representations when solving mechanics problems. Multiple representations improve students’ comprehension and recall of mechanics ideas, supporting efficient teaching methods and critical thinking. This study employed a quasi-experimental research design with pre-and post-test control and experimental groups. A total of 100 students were enrolled in the study, divided into two groups: the experimental group consisted of 52 students who received instruction using multiple representations, and the control group consisted of 48 students who received instruction using traditional methods. In the study, students’ performance was measured before and after intervention using a mechanics test. The mechanics problem-solving pre-test findings indicated a p-value greater than 0.05 between the control and experimental groups, indicating no statistically significant differences between the two groups. A post-test revealed a p-value < 0.001 between the groups, indicating that the experimental group outperformed the control group significantly. According to the findings, engineering student’s academic performance in physics can be improved through the use of multiple representations in teaching and learning mechanics problem-solving. This study will support the development of Rwandan education policies, instructional approaches, and global pedagogy are all supported by this study.","PeriodicalId":39773,"journal":{"name":"Physics Education","volume":"64 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6552/ad4944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the use of multiple representations in physics teaching and learning has become more common. This study sought to determine if engineering students’ performance in Rwanda might be improved by the use of numerous representations when solving mechanics problems. Multiple representations improve students’ comprehension and recall of mechanics ideas, supporting efficient teaching methods and critical thinking. This study employed a quasi-experimental research design with pre-and post-test control and experimental groups. A total of 100 students were enrolled in the study, divided into two groups: the experimental group consisted of 52 students who received instruction using multiple representations, and the control group consisted of 48 students who received instruction using traditional methods. In the study, students’ performance was measured before and after intervention using a mechanics test. The mechanics problem-solving pre-test findings indicated a p-value greater than 0.05 between the control and experimental groups, indicating no statistically significant differences between the two groups. A post-test revealed a p-value < 0.001 between the groups, indicating that the experimental group outperformed the control group significantly. According to the findings, engineering student’s academic performance in physics can be improved through the use of multiple representations in teaching and learning mechanics problem-solving. This study will support the development of Rwandan education policies, instructional approaches, and global pedagogy are all supported by this study.
期刊介绍:
Physics Education seeks to serve the physics teaching community and we welcome contributions from teachers. We seek to support the teaching of physics to students aged 11 up to introductory undergraduate level. We aim to provide professional development and support for teachers of physics around the world by providing: a forum for practising teachers to make an active contribution to the physics teaching community; knowledge updates in physics, educational research and relevant wider curriculum developments; and strategies for teaching and classroom management that will engage and motivate students.