Ioannis Panopoulos, Stylianos I. Venieris, I. Venieris
{"title":"CARIn: Constraint-Aware and Responsive Inference on Heterogeneous Devices for Single- and Multi-DNN Workloads","authors":"Ioannis Panopoulos, Stylianos I. Venieris, I. Venieris","doi":"10.1145/3665868","DOIUrl":null,"url":null,"abstract":"\n The relentless expansion of deep learning (DL) applications in recent years has prompted a pivotal shift towards on-device execution, driven by the urgent need for real-time processing, heightened privacy concerns, and reduced latency across diverse domains. This paper addresses the challenges inherent in optimising the execution of deep neural networks (DNNs) on mobile devices, with a focus on device heterogeneity, multi-DNN execution, and dynamic runtime adaptation. We introduce\n CARIn\n , a novel framework designed for the optimised deployment of both single- and multi-DNN applications under user-defined service-level objectives (SLOs). Leveraging an expressive multi-objective optimisation (MOO) framework and a runtime-aware sorting and search algorithm (\n RASS\n ) as the MOO solver,\n CARIn\n facilitates efficient adaptation to dynamic conditions while addressing resource contention issues associated with multi-DNN execution. Notably,\n RASS\n generates a set of configurations, anticipating subsequent runtime adaptation, ensuring rapid, low-overhead adjustments in response to environmental fluctuations. Extensive evaluation across diverse tasks, including text classification, scene recognition, and face analysis, showcases the versatility of\n CARIn\n across various model architectures, such as Convolutional Neural Networks (CNNs) and Transformers, and realistic use cases. We observe a substantial enhancement in the fair treatment of the problem’s objectives, reaching 1.92 × when compared to single-model designs, and up to 10.69 × in contrast to the state-of-the-art OODIn framework. Additionally, we achieve a significant gain of up to 4.06 × over hardware-unaware designs in multi-DNN applications. Finally, our framework sustains its performance while effectively eliminating the time overhead associated with identifying the optimal design in response to environmental challenges.\n","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3665868","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The relentless expansion of deep learning (DL) applications in recent years has prompted a pivotal shift towards on-device execution, driven by the urgent need for real-time processing, heightened privacy concerns, and reduced latency across diverse domains. This paper addresses the challenges inherent in optimising the execution of deep neural networks (DNNs) on mobile devices, with a focus on device heterogeneity, multi-DNN execution, and dynamic runtime adaptation. We introduce
CARIn
, a novel framework designed for the optimised deployment of both single- and multi-DNN applications under user-defined service-level objectives (SLOs). Leveraging an expressive multi-objective optimisation (MOO) framework and a runtime-aware sorting and search algorithm (
RASS
) as the MOO solver,
CARIn
facilitates efficient adaptation to dynamic conditions while addressing resource contention issues associated with multi-DNN execution. Notably,
RASS
generates a set of configurations, anticipating subsequent runtime adaptation, ensuring rapid, low-overhead adjustments in response to environmental fluctuations. Extensive evaluation across diverse tasks, including text classification, scene recognition, and face analysis, showcases the versatility of
CARIn
across various model architectures, such as Convolutional Neural Networks (CNNs) and Transformers, and realistic use cases. We observe a substantial enhancement in the fair treatment of the problem’s objectives, reaching 1.92 × when compared to single-model designs, and up to 10.69 × in contrast to the state-of-the-art OODIn framework. Additionally, we achieve a significant gain of up to 4.06 × over hardware-unaware designs in multi-DNN applications. Finally, our framework sustains its performance while effectively eliminating the time overhead associated with identifying the optimal design in response to environmental challenges.
期刊介绍:
The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.