{"title":"Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra. II","authors":"A. M. Bikchentaev, M. F. Darwish, M. A. Muratov","doi":"10.1007/s43034-024-00361-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\tau \\)</span> be a faithful semifinite normal trace on a von Neumann algebra <span>\\(\\mathcal {M}\\)</span>, let <span>\\(S(\\mathcal {M}, \\tau )\\)</span> be the <span>\\({}^*\\)</span>-algebra of all <span>\\(\\tau \\)</span>-measurable operators. Let <span>\\(\\mu (t; X)\\)</span> be the generalized singular value function of the operator <span>\\(X \\in S(\\mathcal {M}, \\tau )\\)</span>. If <span>\\(\\mathcal {E}\\)</span> is a normed ideal space (NIS) on <span>\\((\\mathcal {M}, \\tau )\\)</span>, then </p><div><div><span>$$\\begin{aligned} \\Vert A\\Vert _\\mathcal {E}\\le \\Vert A+\\textrm{i} B\\Vert _\\mathcal {E} \\end{aligned}$$</span></div><div>\n (*)\n </div></div><p>for all self-adjoint operators <span>\\(A, B \\in \\mathcal {E}\\)</span>. In particular, if <span>\\(A, B \\in (L_1+L_{\\infty })(\\mathcal {M}, \\tau )\\)</span> are self-adjoint, then we have the (Hardy–Littlewood–Pólya) weak submajorization, <span>\\(A \\preceq _w A+\\textrm{i}B\\)</span>. Inequality <span>\\((*)\\)</span> cannot be extended to the Shatten–von Neumann ideals <span>\\(\\mathfrak {S}_p\\)</span>, <span>\\( 0< p <1\\)</span>. Hence, the well-known inequality <span>\\( \\mu (t; A) \\le \\mu (t; A+\\textrm{i} B)\\)</span> for all <span>\\(t>0\\)</span>, positive <span>\\(A \\in S(\\mathcal {M}, \\tau )\\)</span> and self-adjoint <span>\\( B \\in S(\\mathcal {M}, \\tau )\\)</span> cannot be extended to all self-adjoint operators <span>\\(A, B \\in S(\\mathcal {M}, \\tau )\\)</span>. Consider self-adjoint operators <span>\\(X, Y\\in S(\\mathcal {M}, \\tau )\\)</span>, let <i>K</i>(<i>X</i>) be the Cayley transform of <i>X</i>. Then, <span>\\(\\mu (t; K(X)-K(Y))\\le 2 \\mu (t; X-Y)\\)</span> for all <span>\\(t>0\\)</span>. If <span>\\(\\mathcal {E}\\)</span> is an <i>F</i>-NIS on <span>\\((\\mathcal {M}, \\tau )\\)</span> and <span>\\(X-Y\\in \\mathcal {E}\\)</span>, then <span>\\(K(X)-K(Y)\\in \\mathcal {E}\\)</span> and <span>\\(\\Vert K(X)-K(Y)\\Vert _\\mathcal {E}\\le 2 \\Vert X-Y\\Vert _\\mathcal {E}\\)</span>.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00361-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(\tau \) be a faithful semifinite normal trace on a von Neumann algebra \(\mathcal {M}\), let \(S(\mathcal {M}, \tau )\) be the \({}^*\)-algebra of all \(\tau \)-measurable operators. Let \(\mu (t; X)\) be the generalized singular value function of the operator \(X \in S(\mathcal {M}, \tau )\). If \(\mathcal {E}\) is a normed ideal space (NIS) on \((\mathcal {M}, \tau )\), then
for all self-adjoint operators \(A, B \in \mathcal {E}\). In particular, if \(A, B \in (L_1+L_{\infty })(\mathcal {M}, \tau )\) are self-adjoint, then we have the (Hardy–Littlewood–Pólya) weak submajorization, \(A \preceq _w A+\textrm{i}B\). Inequality \((*)\) cannot be extended to the Shatten–von Neumann ideals \(\mathfrak {S}_p\), \( 0< p <1\). Hence, the well-known inequality \( \mu (t; A) \le \mu (t; A+\textrm{i} B)\) for all \(t>0\), positive \(A \in S(\mathcal {M}, \tau )\) and self-adjoint \( B \in S(\mathcal {M}, \tau )\) cannot be extended to all self-adjoint operators \(A, B \in S(\mathcal {M}, \tau )\). Consider self-adjoint operators \(X, Y\in S(\mathcal {M}, \tau )\), let K(X) be the Cayley transform of X. Then, \(\mu (t; K(X)-K(Y))\le 2 \mu (t; X-Y)\) for all \(t>0\). If \(\mathcal {E}\) is an F-NIS on \((\mathcal {M}, \tau )\) and \(X-Y\in \mathcal {E}\), then \(K(X)-K(Y)\in \mathcal {E}\) and \(\Vert K(X)-K(Y)\Vert _\mathcal {E}\le 2 \Vert X-Y\Vert _\mathcal {E}\).
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.