Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra. II

IF 1.2 3区 数学 Q1 MATHEMATICS
A. M. Bikchentaev, M. F. Darwish, M. A. Muratov
{"title":"Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra. II","authors":"A. M. Bikchentaev,&nbsp;M. F. Darwish,&nbsp;M. A. Muratov","doi":"10.1007/s43034-024-00361-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\tau \\)</span> be a faithful semifinite normal trace on a von Neumann algebra <span>\\(\\mathcal {M}\\)</span>, let <span>\\(S(\\mathcal {M}, \\tau )\\)</span> be the <span>\\({}^*\\)</span>-algebra of all <span>\\(\\tau \\)</span>-measurable operators. Let <span>\\(\\mu (t; X)\\)</span> be the generalized singular value function of the operator <span>\\(X \\in S(\\mathcal {M}, \\tau )\\)</span>. If <span>\\(\\mathcal {E}\\)</span> is a normed ideal space (NIS) on <span>\\((\\mathcal {M}, \\tau )\\)</span>, then </p><div><div><span>$$\\begin{aligned} \\Vert A\\Vert _\\mathcal {E}\\le \\Vert A+\\textrm{i} B\\Vert _\\mathcal {E} \\end{aligned}$$</span></div><div>\n (*)\n </div></div><p>for all self-adjoint operators <span>\\(A, B \\in \\mathcal {E}\\)</span>. In particular, if <span>\\(A, B \\in (L_1+L_{\\infty })(\\mathcal {M}, \\tau )\\)</span> are self-adjoint, then we have the (Hardy–Littlewood–Pólya) weak submajorization, <span>\\(A \\preceq _w A+\\textrm{i}B\\)</span>. Inequality <span>\\((*)\\)</span> cannot be extended to the Shatten–von Neumann ideals <span>\\(\\mathfrak {S}_p\\)</span>, <span>\\( 0&lt; p &lt;1\\)</span>. Hence, the well-known inequality <span>\\( \\mu (t; A) \\le \\mu (t; A+\\textrm{i} B)\\)</span> for all <span>\\(t&gt;0\\)</span>, positive <span>\\(A \\in S(\\mathcal {M}, \\tau )\\)</span> and self-adjoint <span>\\( B \\in S(\\mathcal {M}, \\tau )\\)</span> cannot be extended to all self-adjoint operators <span>\\(A, B \\in S(\\mathcal {M}, \\tau )\\)</span>. Consider self-adjoint operators <span>\\(X, Y\\in S(\\mathcal {M}, \\tau )\\)</span>, let <i>K</i>(<i>X</i>) be the Cayley transform of <i>X</i>. Then, <span>\\(\\mu (t; K(X)-K(Y))\\le 2 \\mu (t; X-Y)\\)</span> for all <span>\\(t&gt;0\\)</span>. If <span>\\(\\mathcal {E}\\)</span> is an <i>F</i>-NIS on <span>\\((\\mathcal {M}, \\tau )\\)</span> and <span>\\(X-Y\\in \\mathcal {E}\\)</span>, then <span>\\(K(X)-K(Y)\\in \\mathcal {E}\\)</span> and <span>\\(\\Vert K(X)-K(Y)\\Vert _\\mathcal {E}\\le 2 \\Vert X-Y\\Vert _\\mathcal {E}\\)</span>.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00361-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\tau \) be a faithful semifinite normal trace on a von Neumann algebra \(\mathcal {M}\), let \(S(\mathcal {M}, \tau )\) be the \({}^*\)-algebra of all \(\tau \)-measurable operators. Let \(\mu (t; X)\) be the generalized singular value function of the operator \(X \in S(\mathcal {M}, \tau )\). If \(\mathcal {E}\) is a normed ideal space (NIS) on \((\mathcal {M}, \tau )\), then

$$\begin{aligned} \Vert A\Vert _\mathcal {E}\le \Vert A+\textrm{i} B\Vert _\mathcal {E} \end{aligned}$$
(*)

for all self-adjoint operators \(A, B \in \mathcal {E}\). In particular, if \(A, B \in (L_1+L_{\infty })(\mathcal {M}, \tau )\) are self-adjoint, then we have the (Hardy–Littlewood–Pólya) weak submajorization, \(A \preceq _w A+\textrm{i}B\). Inequality \((*)\) cannot be extended to the Shatten–von Neumann ideals \(\mathfrak {S}_p\), \( 0< p <1\). Hence, the well-known inequality \( \mu (t; A) \le \mu (t; A+\textrm{i} B)\) for all \(t>0\), positive \(A \in S(\mathcal {M}, \tau )\) and self-adjoint \( B \in S(\mathcal {M}, \tau )\) cannot be extended to all self-adjoint operators \(A, B \in S(\mathcal {M}, \tau )\). Consider self-adjoint operators \(X, Y\in S(\mathcal {M}, \tau )\), let K(X) be the Cayley transform of X. Then, \(\mu (t; K(X)-K(Y))\le 2 \mu (t; X-Y)\) for all \(t>0\). If \(\mathcal {E}\) is an F-NIS on \((\mathcal {M}, \tau )\) and \(X-Y\in \mathcal {E}\), then \(K(X)-K(Y)\in \mathcal {E}\) and \(\Vert K(X)-K(Y)\Vert _\mathcal {E}\le 2 \Vert X-Y\Vert _\mathcal {E}\).

隶属于半有限 von Neumann 代数的可测算子的理想空间。二
让\(\tau\)是冯-诺依曼代数\(\mathcal {M}\)上的忠实半有限正态迹线,让\(S(\mathcal {M}, \tau )\)是所有\(\tau\)-可测算子的\({}^*\)-代数。让 \(\mu (t; X)\) 是算子 \(X \ in S(\mathcal {M}, \tau )\) 的广义奇异值函数。如果 \(\mathcal {E}\) 是 \((\mathcal {M}, \tau )\) 上的规范理想空间(NIS),那么 $$\begin{aligned}\Vert A+\textrm{i}B\Vert _\mathcal {E}\end{aligned}$$ (*) for all self-adjoint operators \(A, B \in \mathcal {E}\).尤其是,如果 (L_1+L_{\infty })(\mathcal {M}, \tau )\) 中的(A, B)都是自偶算子,那么我们就有(Hardy-Littlewood-Pólya)弱子ajorization,(A \preceq _w A+\textrm{i}B\ )。不等式 \((*)\) 不能扩展到 Shatten-von Neumann 理想 \(\mathfrak {S}_p\), \( 0< p <1\).因此,众所周知的不等式 \( \mu (t; A) \le \mu (t; A+\textrm{i} B)\) for all \(t>;0),正(A在S(\mathcal {M}, \tau)中)和自偶算子(B在S(\mathcal {M}, \tau)中)不能扩展到所有自偶算子(A, B在S(\mathcal {M}, \tau)中)。Consider self-adjoint operators \(X, Y\in S(\mathcal {M}, \tau )\), let K(X) be the Cayley transform of X. Then, \(\mu (t; K(X)-K(Y))\le 2 \mu (t; X-Y)\) for all \(t>0\).如果 \(\mathcal {E}\) 是一个 F-NIS on \((\mathcal {M}, \tau )\) and \(X-Y\in \mathcal {E}\)、then \(K(X)-K(Y)in \mathcal {E}\) and\(\Vert K(X)-K(Y)\Vert _\mathcal {E}\le 2 \Vert X-Y\Vert _\mathcal {E}\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信