Hybrid catalyst-assisted synthesis of multifunctional carbon derived from Camellia shell for high-performance sodium-ion batteries and sodium-ion hybrid capacitors
Hanshu Mao, Sisi Yang, Yingjun Yang, Jinyue Yang, Guizhi Yuan, Mingtao Zheng, Hang Hu, Yeru Liang, Xiaoyuan Yu
{"title":"Hybrid catalyst-assisted synthesis of multifunctional carbon derived from Camellia shell for high-performance sodium-ion batteries and sodium-ion hybrid capacitors","authors":"Hanshu Mao, Sisi Yang, Yingjun Yang, Jinyue Yang, Guizhi Yuan, Mingtao Zheng, Hang Hu, Yeru Liang, Xiaoyuan Yu","doi":"10.1002/cnl2.146","DOIUrl":null,"url":null,"abstract":"<p>Biomass-derived carbon as energy storage materials have gradually attracted widespread attention due to their low cost, sustainability, and inherent structural advantages. Herein, hard carbon (H-1200) and porous carbon (PC-800) for sodium-ion batteries (SIBs), sodium-ion capacitors (SICs) half cells and sodium-ion hybrid capacitors (SIHCs) have been synthesized from the same biomass precursor of Camellia shells through different treatments. H-1200 synthesized by directly high-temperature carbonization possesses a rational graphitic layer structure and plentiful heteroatoms. When applied as anode for SIBs, it exhibits a reversible capacity of 365.5 mAh g<sup>–1</sup> at 25 mA g<sup>–1</sup> and capacity retention 89.0% after 400 cycles at 200 mA g<sup>–1</sup>. Additionally, PC-800 prepared by catalytic carbonization of K<sub>2</sub>C<sub>2</sub>O<sub>4</sub>/CaC<sub>2</sub>O<sub>4</sub> hybrid catalyst has a sophisticated porous structure and a high surface area of 2186.9 m<sup>2</sup> g<sup>–1</sup>. When employed as a cathode for SICs, it delivers a maximum capacity 104.2 mAh g<sup>–1</sup> at 100 mA g<sup>–1</sup> and 35.0 mAh g<sup>–1</sup> at 5 A g<sup>–1</sup>. Furthermore, the all carbon assembled SIHC (H-1200||PC-800) using H-1200 as anode and PC-800 as cathode, features a broad output voltage range (0.01 ~ 4.1 V), high energy density of 161.5 Wh kg<sup>–1</sup>, power density of 12896.1 W kg<sup>–1</sup>, and superior capacity retention of 90.32% after 10000 cycles at 10 A g<sup>–1</sup>. This research result provide a new horizon for constructing low-cost and large-scale production of biomass derived carbon for energy storage materials.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"673-688"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.146","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Biomass-derived carbon as energy storage materials have gradually attracted widespread attention due to their low cost, sustainability, and inherent structural advantages. Herein, hard carbon (H-1200) and porous carbon (PC-800) for sodium-ion batteries (SIBs), sodium-ion capacitors (SICs) half cells and sodium-ion hybrid capacitors (SIHCs) have been synthesized from the same biomass precursor of Camellia shells through different treatments. H-1200 synthesized by directly high-temperature carbonization possesses a rational graphitic layer structure and plentiful heteroatoms. When applied as anode for SIBs, it exhibits a reversible capacity of 365.5 mAh g–1 at 25 mA g–1 and capacity retention 89.0% after 400 cycles at 200 mA g–1. Additionally, PC-800 prepared by catalytic carbonization of K2C2O4/CaC2O4 hybrid catalyst has a sophisticated porous structure and a high surface area of 2186.9 m2 g–1. When employed as a cathode for SICs, it delivers a maximum capacity 104.2 mAh g–1 at 100 mA g–1 and 35.0 mAh g–1 at 5 A g–1. Furthermore, the all carbon assembled SIHC (H-1200||PC-800) using H-1200 as anode and PC-800 as cathode, features a broad output voltage range (0.01 ~ 4.1 V), high energy density of 161.5 Wh kg–1, power density of 12896.1 W kg–1, and superior capacity retention of 90.32% after 10000 cycles at 10 A g–1. This research result provide a new horizon for constructing low-cost and large-scale production of biomass derived carbon for energy storage materials.