Matthew Braun, Noah T. Anderson, Kristin D. Bergmann, Elizabeth M. Griffith, M. Saltzman
{"title":"Early Mississippian global δ13C excursion is not a diagenetic artifact","authors":"Matthew Braun, Noah T. Anderson, Kristin D. Bergmann, Elizabeth M. Griffith, M. Saltzman","doi":"10.1130/g52109.1","DOIUrl":null,"url":null,"abstract":"Shallow-water platform carbonate δ13C may provide a record of changes in ocean chemistry through time, but early marine diagenesis and local processes can decouple these records from the global carbon cycle. Recent studies of calcium isotopes (δ44/40Ca) in shallow-water carbonates indicate that δ44/40Ca can be altered during early marine diagenesis, implying that δ13C may also potentially be altered. Here, we tested the hypothesis that the platform carbonate δ13C record of the Kinderhookian-Osagean boundary excursion (KOBE), ∼353 m.y. ago, reflects a period of global diagenesis using paired isotopic (δ44/40Ca and clumped isotopes) and trace-element geochemistry from three sections in the United States. There is little evidence for covariation between δ44/40Ca and δ13C during the KOBE. Clumped isotopes from our shallowest section support primarily sediment-buffered diagenesis at relatively low temperatures. We conclude that the δ13C record of the KOBE as recorded in shallow-water carbonate is consistent with a shift in the dissolved inorganic carbon reservoir and that, more generally, ancient shallow-water carbonates can retain records of primary seawater chemistry.","PeriodicalId":503125,"journal":{"name":"Geology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/g52109.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Shallow-water platform carbonate δ13C may provide a record of changes in ocean chemistry through time, but early marine diagenesis and local processes can decouple these records from the global carbon cycle. Recent studies of calcium isotopes (δ44/40Ca) in shallow-water carbonates indicate that δ44/40Ca can be altered during early marine diagenesis, implying that δ13C may also potentially be altered. Here, we tested the hypothesis that the platform carbonate δ13C record of the Kinderhookian-Osagean boundary excursion (KOBE), ∼353 m.y. ago, reflects a period of global diagenesis using paired isotopic (δ44/40Ca and clumped isotopes) and trace-element geochemistry from three sections in the United States. There is little evidence for covariation between δ44/40Ca and δ13C during the KOBE. Clumped isotopes from our shallowest section support primarily sediment-buffered diagenesis at relatively low temperatures. We conclude that the δ13C record of the KOBE as recorded in shallow-water carbonate is consistent with a shift in the dissolved inorganic carbon reservoir and that, more generally, ancient shallow-water carbonates can retain records of primary seawater chemistry.