Tacho-less spur gear condition monitoring at variable speed operation using the adaptive application of variational mode extraction

Shahis Hashim, Piyush Shakya
{"title":"Tacho-less spur gear condition monitoring at variable speed operation using the adaptive application of variational mode extraction","authors":"Shahis Hashim, Piyush Shakya","doi":"10.1177/14759217241247867","DOIUrl":null,"url":null,"abstract":"Effective condition monitoring of machine components contributes to a safer working environment for operators and assists in averting critical machinery shutdowns. In real-world industrial scenarios, fault detection must remain simplified, user-friendly and robust despite speed variations. The operational demands of machinery frequently result in speed fluctuations, leading to spectral smearing, thereby compromising the efficiency of the analysis methodology. Furthermore, the intricacies of parameter initialisation often increase the complexity of the analysis methods. This study introduces a fault diagnosis algorithm that requires minimal initialisation and operates independently of tacho pulses. The algorithm proposed in the study incorporates variational mode extraction with the maxima tracking algorithm for instantaneous frequency estimation. Hankel matrix-based selective spectral fusion is proposed to mitigate the impact of frequency tracking errors caused by transient noise. The results of spectral side-band-based fault severity analysis, conducted on an in-house spur gearbox test-bed with seeded tooth chips, underscore the superior performance of the proposed algorithm when compared to contemporary non-stationary analysis methods.","PeriodicalId":515545,"journal":{"name":"Structural Health Monitoring","volume":"40 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14759217241247867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effective condition monitoring of machine components contributes to a safer working environment for operators and assists in averting critical machinery shutdowns. In real-world industrial scenarios, fault detection must remain simplified, user-friendly and robust despite speed variations. The operational demands of machinery frequently result in speed fluctuations, leading to spectral smearing, thereby compromising the efficiency of the analysis methodology. Furthermore, the intricacies of parameter initialisation often increase the complexity of the analysis methods. This study introduces a fault diagnosis algorithm that requires minimal initialisation and operates independently of tacho pulses. The algorithm proposed in the study incorporates variational mode extraction with the maxima tracking algorithm for instantaneous frequency estimation. Hankel matrix-based selective spectral fusion is proposed to mitigate the impact of frequency tracking errors caused by transient noise. The results of spectral side-band-based fault severity analysis, conducted on an in-house spur gearbox test-bed with seeded tooth chips, underscore the superior performance of the proposed algorithm when compared to contemporary non-stationary analysis methods.
利用变异模式提取的自适应应用,对变速运行时的无转速器正齿轮状态进行监测
对机器部件进行有效的状态监测有助于为操作员提供更安全的工作环境,并帮助避免关键机器停机。在实际工业应用中,故障检测必须保持简化、用户友好和强大的功能,即使在速度变化的情况下也是如此。机械的运行需求经常会导致速度波动,造成频谱模糊,从而影响分析方法的效率。此外,参数初始化的复杂性往往会增加分析方法的复杂性。本研究介绍了一种故障诊断算法,该算法只需最少的初始化,且独立于转速脉冲运行。研究中提出的算法结合了变异模式提取和最大值跟踪算法,用于瞬时频率估计。研究提出了基于 Hankel 矩阵的选择性频谱融合,以减轻瞬态噪声造成的频率跟踪误差的影响。基于边带频谱的故障严重性分析是在内部正齿轮箱测试平台上进行的,该测试平台带有种子齿片,与当代的非稳态分析方法相比,所提出的算法性能更优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信