{"title":"Commutators and generalized derivations acting on Lie ideals in prime rings","authors":"Basudeb Dhara","doi":"10.1007/s11565-024-00521-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>R</i> be a prime ring of char <span>\\((R)\\ne 2, 3\\)</span> and <i>L</i> a noncentral Lie ideal of <i>R</i>. Let <i>U</i> be the Utumi quotient ring of <i>R</i> and <span>\\(C=Z(U)\\)</span> be the extended centroid of <i>R</i>. Suppose that <i>F</i>, <i>G</i>, <i>H</i> are three generalized derivations of <i>R</i> such that </p><div><div><span>$$[F(u),u]G(u)+u[H(u),u]=0$$</span></div></div><p>for all <span>\\(u\\in L\\)</span>. Then either <i>R</i> satisfies standard polynomial <span>\\(s_4(x_1,x_2,x_3,x_4)\\)</span> or one of the following holds: </p><ol>\n <li>\n <span>1.</span>\n \n <p>There exist <span>\\(\\alpha , \\beta \\in C\\)</span> such that <span>\\(F(x)= \\alpha x\\)</span> and <span>\\(H(x)= \\beta x\\)</span> for all <span>\\( x\\in R\\)</span>;</p>\n \n </li>\n <li>\n <span>2.</span>\n \n <p>There exists <span>\\(\\beta \\in C\\)</span> such that <span>\\(G(x)=0\\)</span>, <span>\\(H(x)=\\beta x\\)</span> for all <span>\\( x\\in R\\)</span>;</p>\n \n </li>\n <li>\n <span>3.</span>\n \n <p>There exist <span>\\(a,b\\in U\\)</span> and <span>\\(0\\ne \\mu \\in C\\)</span> such that <span>\\(F(x)=xa\\)</span>, <span>\\(G(x)=\\mu x\\)</span>, <span>\\(H(x)=bx\\)</span> for all <span>\\( x\\in R\\)</span> with <span>\\(\\mu a+b\\in C\\)</span>.</p>\n \n </li>\n </ol></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 4","pages":"1509 - 1526"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00521-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Let R be a prime ring of char \((R)\ne 2, 3\) and L a noncentral Lie ideal of R. Let U be the Utumi quotient ring of R and \(C=Z(U)\) be the extended centroid of R. Suppose that F, G, H are three generalized derivations of R such that
$$[F(u),u]G(u)+u[H(u),u]=0$$
for all \(u\in L\). Then either R satisfies standard polynomial \(s_4(x_1,x_2,x_3,x_4)\) or one of the following holds:
1.
There exist \(\alpha , \beta \in C\) such that \(F(x)= \alpha x\) and \(H(x)= \beta x\) for all \( x\in R\);
2.
There exists \(\beta \in C\) such that \(G(x)=0\), \(H(x)=\beta x\) for all \( x\in R\);
3.
There exist \(a,b\in U\) and \(0\ne \mu \in C\) such that \(F(x)=xa\), \(G(x)=\mu x\), \(H(x)=bx\) for all \( x\in R\) with \(\mu a+b\in C\).
假设 F, G, H 是 R 的三个广义派生,使得 $$[F(u),u]G(u)+u[H(u),u]=0$$对于所有 \\(u\in L\).那么,要么 R 满足标准多项式 (s_4(x_1,x_2,x_3,x_4)),要么以下条件之一成立: 1. 存在 \(α, \beta in C\) such that \(F(x)= \α x\) and\(H(x)= \beta x\) for all \( x\in R\); 2. There exists \(beta in C\) such that \(G(x)=0\),\(H(x)=\beta x\) for all \( x\in R\); 3. There exist \(a,b\in U\) and\(0\ne\mu\in C\) such that \(F(x)=xa\), \(G(x)=\mu x\), \(H(x)=bx\) for all \( x\in R\) with\(\mu a+b\in C\).
期刊介绍:
Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.