Fast interfacial electrocatalytic desolvation enabling low-temperature and long-cycle-life aqueous Zn batteries

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2024-05-23 DOI:10.1002/inf2.12558
Jian Wang, Hongfei Hu, Lujie Jia, Jing Zhang, Quan Zhuang, Linge Li, Yongzheng Zhang, Dong Wang, Qinghua Guan, Huimin Hu, Meinan Liu, Liang Zhan, Henry Adenusi, Stefano Passerini, Hongzhen Lin
{"title":"Fast interfacial electrocatalytic desolvation enabling low-temperature and long-cycle-life aqueous Zn batteries","authors":"Jian Wang,&nbsp;Hongfei Hu,&nbsp;Lujie Jia,&nbsp;Jing Zhang,&nbsp;Quan Zhuang,&nbsp;Linge Li,&nbsp;Yongzheng Zhang,&nbsp;Dong Wang,&nbsp;Qinghua Guan,&nbsp;Huimin Hu,&nbsp;Meinan Liu,&nbsp;Liang Zhan,&nbsp;Henry Adenusi,&nbsp;Stefano Passerini,&nbsp;Hongzhen Lin","doi":"10.1002/inf2.12558","DOIUrl":null,"url":null,"abstract":"<p>Low-temperature zinc batteries (LT-ZIBs) based on aqueous electrolytes show great promise for practical applications owing to their natural resource abundance and low cost. However, they suffer from sluggish kinetics with elevated energy barriers due to the dissociation of bulky Zn(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup> solvation structure and free Zn<sup>2+</sup> diffusion, resulting in unsatisfactory lifespan and performance. Herein, dissimilar to solvation shell tuning or layer spacing enlargement engineering, delocalized electrons in cathode through constructing intrinsic defect engineering is proposed to achieve a rapid electrocatalytic desolvation to obtain free Zn<sup>2+</sup> for insertion/extraction. As revealed by density functional theory calculations and interfacial spectroscopic characterizations, the intrinsic delocalized electron distribution propels the Zn(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup> dissociation, forming a reversible interphase and facilitating Zn<sup>2+</sup> diffusion across the electrolyte/cathode interface. The as-fabricated oxygen defect-rich V<sub>2</sub>O<sub>5</sub> on hierarchical porous carbon (ODVO@HPC) electrode exhibits high capacity robustness from 25 to −20°C. Operating at −20°C, the ODVO@HPC delivers 191 mAh g<sup>−1</sup> at 50 A g<sup>−1</sup> and lasts for 50 000 cycles at 10 A g<sup>−1</sup>, significantly enhancing the power density and lifespan under low-temperature environments in comparison to previous reports. Even with areal mass loading of ~13 mg cm<sup>−2</sup>, both coin cells and pouch batteries maintain excellent stability and areal capacities, realizing practical high-performance LT-ZIBs.</p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12558","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12558","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Low-temperature zinc batteries (LT-ZIBs) based on aqueous electrolytes show great promise for practical applications owing to their natural resource abundance and low cost. However, they suffer from sluggish kinetics with elevated energy barriers due to the dissociation of bulky Zn(H2O)62+ solvation structure and free Zn2+ diffusion, resulting in unsatisfactory lifespan and performance. Herein, dissimilar to solvation shell tuning or layer spacing enlargement engineering, delocalized electrons in cathode through constructing intrinsic defect engineering is proposed to achieve a rapid electrocatalytic desolvation to obtain free Zn2+ for insertion/extraction. As revealed by density functional theory calculations and interfacial spectroscopic characterizations, the intrinsic delocalized electron distribution propels the Zn(H2O)62+ dissociation, forming a reversible interphase and facilitating Zn2+ diffusion across the electrolyte/cathode interface. The as-fabricated oxygen defect-rich V2O5 on hierarchical porous carbon (ODVO@HPC) electrode exhibits high capacity robustness from 25 to −20°C. Operating at −20°C, the ODVO@HPC delivers 191 mAh g−1 at 50 A g−1 and lasts for 50 000 cycles at 10 A g−1, significantly enhancing the power density and lifespan under low-temperature environments in comparison to previous reports. Even with areal mass loading of ~13 mg cm−2, both coin cells and pouch batteries maintain excellent stability and areal capacities, realizing practical high-performance LT-ZIBs.

Abstract Image

Abstract Image

快速界面电催化脱溶实现低温长循环寿命锌水电池
基于水性电解质的低温锌电池(LT-ZIBs)因其自然资源丰富、成本低廉而在实际应用中大有可为。然而,由于笨重的 Zn(H2O)62+ 溶胶结构的解离和自由 Zn2+ 扩散,它们的动力学缓慢,能垒升高,导致寿命和性能不尽人意。与溶壳调整或层间距增大工程不同,本文提出通过构建固有缺陷工程使电子在阴极中脱域,从而实现快速电催化解溶,获得自由 Zn2+ 以进行插入/提取。密度泛函理论计算和界面光谱特性分析表明,固有的脱局域电子分布推动了 Zn(H2O)62+ 的解离,形成了可逆的间相,促进了 Zn2+ 在电解质/阴极界面上的扩散。在分层多孔碳(ODVO@HPC)上制造的富氧缺陷 V2O5 电极在 25 至 -20°C 的温度范围内表现出高容量稳定性。在-20°C下工作时,ODVO@HPC在50 A g-1的条件下可提供191 mAh g-1的电量,在10 A g-1的条件下可持续50 000次循环,与之前的报告相比,显著提高了低温环境下的功率密度和使用寿命。即使钮扣电池和袋装电池的平均质量负载为 ~13 mg cm-2,它们仍能保持出色的稳定性和平均容量,实现了实用的高性能 LT-ZIB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信