Properties of a Linear Operator Involving Lambert Series and Rabotnov Function

IF 1 Q1 MATHEMATICS
Jamal Salah
{"title":"Properties of a Linear Operator Involving Lambert Series and Rabotnov Function","authors":"Jamal Salah","doi":"10.1155/2024/3657721","DOIUrl":null,"url":null,"abstract":"This work is an attempt to apply Lambert series in the theory of univalent functions. We first consider the Hadamard product of Rabotnov function and Lambert series with coefficients derived from the arithmetic function σn to introduce a normalized linear operator JRα,βz. We then acquire sufficient conditions for JRα,βz to be univalent, starlike and convex, respectively. Furthermore, we discuss the inclusion results in some special classes, namely, spiral-like and convex spiral-like subclasses. In addition, we extend the findings by incorporating two Robin’s inequalities, one of which is analogous to the Riemann hypothesis.","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/3657721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work is an attempt to apply Lambert series in the theory of univalent functions. We first consider the Hadamard product of Rabotnov function and Lambert series with coefficients derived from the arithmetic function σn to introduce a normalized linear operator JRα,βz. We then acquire sufficient conditions for JRα,βz to be univalent, starlike and convex, respectively. Furthermore, we discuss the inclusion results in some special classes, namely, spiral-like and convex spiral-like subclasses. In addition, we extend the findings by incorporating two Robin’s inequalities, one of which is analogous to the Riemann hypothesis.
涉及朗伯数列和拉波特诺夫函数的线性算子的性质
这项工作是在单值函数理论中应用兰伯特级数的尝试。我们首先考虑了拉波特诺夫函数与兰伯特级数的哈达玛乘积,其系数由算术函数 σn 导出,从而引入了归一化线性算子 JRα,βz。然后,我们分别获得了 JRα,βz 为单值、星形和凸形的充分条件。此外,我们还讨论了一些特殊类的包含结果,即类螺旋和凸类螺旋子类。此外,我们还通过纳入两个罗宾不等式(其中一个类似于黎曼假设)来扩展研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES Mathematics-Mathematics (miscellaneous)
CiteScore
2.30
自引率
8.30%
发文量
60
审稿时长
17 weeks
期刊介绍: The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信