Hyperinvariant subspaces for operators intertwined with weighted shift operators

IF 0.6 3区 数学 Q3 MATHEMATICS
Z. Dali, A. Segres
{"title":"Hyperinvariant subspaces for operators intertwined with weighted shift operators","authors":"Z. Dali,&nbsp;A. Segres","doi":"10.1007/s10476-024-00023-y","DOIUrl":null,"url":null,"abstract":"<div><p>Suppose that <span>\\(T\\)</span> is an absolutely continuous polynomially bounded operator, <span>\\(S_{\\omega}\\)</span> is a bilateral weighted shift, there exists a <span>\\(\\phi\\in \\mathbb{H}^{\\infty}\\)</span> such that <span>\\(\\ker \\phi(S_{\\omega}^{*})\\neq \\{0\\}\\)</span> and \n a nonzero operator <span>\\(X\\)</span> such that <span>\\(S^{(\\infty)}_{\\omega}X=XT\\)</span>, where <span>\\(S^{(\\infty)}_{\\omega}\\)</span> is the infinite countable orthogonal sum of copies of <span>\\(S_{\\omega}\\)</span>. We prove that <span>\\(T\\)</span> has nontrivial hyperinvariant subspaces, that are the closures of <span>\\(\\text{Ran} \\psi(T)\\)</span> for some <span>\\(\\psi \\in \\mathbb{H}^{\\infty}\\)</span>.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00023-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that \(T\) is an absolutely continuous polynomially bounded operator, \(S_{\omega}\) is a bilateral weighted shift, there exists a \(\phi\in \mathbb{H}^{\infty}\) such that \(\ker \phi(S_{\omega}^{*})\neq \{0\}\) and a nonzero operator \(X\) such that \(S^{(\infty)}_{\omega}X=XT\), where \(S^{(\infty)}_{\omega}\) is the infinite countable orthogonal sum of copies of \(S_{\omega}\). We prove that \(T\) has nontrivial hyperinvariant subspaces, that are the closures of \(\text{Ran} \psi(T)\) for some \(\psi \in \mathbb{H}^{\infty}\).

与加权移位算子交织的算子的超不变子空间
假设\(T\)是一个绝对连续的多项式有界算子,\(S_{\omega}\)是一个双边加权移动、存在一个(\phi\in \mathbb{H}^{infty}\)使得\(\ker \phi(S_{\omega}^{*})\neq \{0\}\)和一个非零算子\(X)使得\(S^{(\infty)}_{\omega}X=XT\)、其中,\(S^{(\infty)}_{\omega}\)是\(S_{\omega}\)副本的无限可数正交和。我们证明\(T\) 有非无量超不变子空间,它们是\(text\{Ran}的闭包。\(text{Ran}^{infty}/)的闭包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信