P.103 Automated pituitary adenoma segmentation for radiosurgery with deep learning-based model

N. Balasubramaniam, M. Cerny, J. May, L. Hamackova, J. Novotnyml, D. Barucic, J. Kybic, M. Majovsky, H. Hallak, R. Liscak, D. Netuka
{"title":"P.103 Automated pituitary adenoma segmentation for radiosurgery with deep learning-based model","authors":"N. Balasubramaniam, M. Cerny, J. May, L. Hamackova, J. Novotnyml, D. Barucic, J. Kybic, M. Majovsky, H. Hallak, R. Liscak, D. Netuka","doi":"10.1017/cjn.2024.206","DOIUrl":null,"url":null,"abstract":"Background: Pituitary adenomas are treated with endoscopic surgery, while stereotactic radiosurgery addresses complex cases. Our study highlights AI’s role in accurate segmentation, improving treatment planning workflow efficiency Methods: In a retrospective study at Na Homolce Hospital (January 2010 to October 2022), SRS for pituitary adenomas was analyzed. Data were split 80:20 for training and validation. Using nnU-net, a medical image segmentation tool, a model predicted precise tumor, optic nerve, and pituitary gland segmentation. Accuracy was evaluated quantitatively with Dice similarity coefficient and qualitatively by human experts. The study explored the impact of tumor volume and hormonal activity status on segmentation accuracy. Results: The study comprised 582 and 146 patients in training and validation sets, respectively. The model achieved Dice similarity coefficients of 83.1% (tumor), 62.9% (normal gland), and 78.0% (optic nerve). Expert assessments deemed 41% directly applicable, 31.5% needing minor adjustments, and 27.4% unsuitable for clinical use. Larger tumor volume and non-functioning adenomas correlated with higher accuracy. Including T2 weighted scans improved DSC for optic nerve and normal gland. Conclusions: The study showcases deep learning’s potential in automating pituitary adenoma segmentation from MRI data, particularly excelling in large, hormonally inactive macroadenomas. Encourages collaborative use with clinicians for improved neurosurgical patient care.","PeriodicalId":9571,"journal":{"name":"Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques","volume":"55 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/cjn.2024.206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pituitary adenomas are treated with endoscopic surgery, while stereotactic radiosurgery addresses complex cases. Our study highlights AI’s role in accurate segmentation, improving treatment planning workflow efficiency Methods: In a retrospective study at Na Homolce Hospital (January 2010 to October 2022), SRS for pituitary adenomas was analyzed. Data were split 80:20 for training and validation. Using nnU-net, a medical image segmentation tool, a model predicted precise tumor, optic nerve, and pituitary gland segmentation. Accuracy was evaluated quantitatively with Dice similarity coefficient and qualitatively by human experts. The study explored the impact of tumor volume and hormonal activity status on segmentation accuracy. Results: The study comprised 582 and 146 patients in training and validation sets, respectively. The model achieved Dice similarity coefficients of 83.1% (tumor), 62.9% (normal gland), and 78.0% (optic nerve). Expert assessments deemed 41% directly applicable, 31.5% needing minor adjustments, and 27.4% unsuitable for clinical use. Larger tumor volume and non-functioning adenomas correlated with higher accuracy. Including T2 weighted scans improved DSC for optic nerve and normal gland. Conclusions: The study showcases deep learning’s potential in automating pituitary adenoma segmentation from MRI data, particularly excelling in large, hormonally inactive macroadenomas. Encourages collaborative use with clinicians for improved neurosurgical patient care.
P.103 利用基于深度学习的模型为放射外科手术自动分割垂体腺瘤
背景:垂体腺瘤可通过内窥镜手术治疗,而立体定向放射外科手术则可治疗复杂病例。我们的研究强调了人工智能在准确分割、提高治疗计划工作流程效率方面的作用:在Na Homolce医院进行的一项回顾性研究(2010年1月至2022年10月)中,对垂体腺瘤的SRS进行了分析。数据按 80:20 的比例分成训练和验证两部分。利用医学影像分割工具 nnU-net,一个模型预测了精确的肿瘤、视神经和垂体分割。用 Dice 相似性系数对准确性进行了定量评估,并由人类专家对准确性进行了定性评估。研究还探讨了肿瘤体积和激素活动状态对分割准确性的影响。研究结果研究分别将 582 名和 146 名患者纳入训练集和验证集。模型的 Dice 相似系数分别为 83.1%(肿瘤)、62.9%(正常腺体)和 78.0%(视神经)。专家评估认为,41%的模型可直接用于临床,31.5%的模型需要稍作调整,27.4%的模型不适合临床使用。较大的肿瘤体积和无功能腺瘤与较高的准确性相关。纳入T2加权扫描可提高视神经和正常腺体的DSC。结论该研究展示了深度学习在从磁共振成像数据中自动分割垂体腺瘤方面的潜力,尤其是在大体积、激素不活跃的大腺瘤方面表现出色。鼓励与临床医生合作使用,以改善神经外科患者的护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信