Andrea Bryndum-Buchholz, Jennifer Herbig, Gerald Darnis, Maxime Geoffroy, Tyler Eddy
{"title":"Ecosystem structure and function of the North Water Polynya","authors":"Andrea Bryndum-Buchholz, Jennifer Herbig, Gerald Darnis, Maxime Geoffroy, Tyler Eddy","doi":"10.1139/as-2023-0050","DOIUrl":null,"url":null,"abstract":"The North Water Polynya is one of the most productive Arctic regions on Earth, sustaining the world’s northernmost Inuit communities for millennia. The polynya is a large and persistent region of open water surrounded by sea ice and exhibits high primary productivity, is a high biodiversity hotspot and is a key habitat and migration corridor for Arctic species. Many aspects of the ecosystem structure and the role of resident species in the North Water Polynya remain uncertain. To shed light on these, we developed the first representation of the North Water Polynya food web using the Ecopath modelling framework. Modelled trophic flows indicated that pelagic and benthic communities were primarily connected by Age 1+ Arctic cod (Boreogadus saida), walrus (Odobenus rosmarus), and ringed seal (Pusa hispida). Large copepods, Age 1+ Arctic cod, and bivalves were key prey species. Overall productivity in the North Water Polynya was higher compared to Western Baffin Bay and Western Greenland, corroborating expectations of relatively high productivity within the polynya. This model provides a baseline description of the North Water Polynya ecosystem structure and function prior to future climate-driven food web changes and the emergence of large-scale commercial fisheries.","PeriodicalId":48575,"journal":{"name":"Arctic Science","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arctic Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/as-2023-0050","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The North Water Polynya is one of the most productive Arctic regions on Earth, sustaining the world’s northernmost Inuit communities for millennia. The polynya is a large and persistent region of open water surrounded by sea ice and exhibits high primary productivity, is a high biodiversity hotspot and is a key habitat and migration corridor for Arctic species. Many aspects of the ecosystem structure and the role of resident species in the North Water Polynya remain uncertain. To shed light on these, we developed the first representation of the North Water Polynya food web using the Ecopath modelling framework. Modelled trophic flows indicated that pelagic and benthic communities were primarily connected by Age 1+ Arctic cod (Boreogadus saida), walrus (Odobenus rosmarus), and ringed seal (Pusa hispida). Large copepods, Age 1+ Arctic cod, and bivalves were key prey species. Overall productivity in the North Water Polynya was higher compared to Western Baffin Bay and Western Greenland, corroborating expectations of relatively high productivity within the polynya. This model provides a baseline description of the North Water Polynya ecosystem structure and function prior to future climate-driven food web changes and the emergence of large-scale commercial fisheries.
Arctic ScienceAgricultural and Biological Sciences-General Agricultural and Biological Sciences
CiteScore
5.00
自引率
12.10%
发文量
81
期刊介绍:
Arctic Science is an interdisciplinary journal that publishes original peer-reviewed research from all areas of natural science and applied science & engineering related to northern Polar Regions. The focus on basic and applied science includes the traditional knowledge and observations of the indigenous peoples of the region as well as cutting-edge developments in biological, chemical, physical and engineering science in all northern environments. Reports on interdisciplinary research are encouraged. Special issues and sections dealing with important issues in northern polar science are also considered.