{"title":"Automated Personalized Loudness Control for Multi-Track Recordings","authors":"Bogdan Moroșanu, Marian Negru, C. Paleologu","doi":"10.3390/a17060228","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to automated music mixing, focusing on the optimization of loudness control in multi-track recordings. By taking into consideration the complexity and artistic nature of traditional mixing processes, we introduce a personalized multi-track leveling method using two types of approaches: a customized genetic algorithm and a neural network-based method. Our method tackles common challenges encountered by audio professionals during prolonged mixing sessions, where consistency can decrease as a result of fatigue. Our algorithm serves as a ‘virtual assistant’ to consistently uphold the initial mixing objectives, hence assuring consistent quality throughout the process. In addition, our system automates the repetitive elements of the mixing process, resulting in a substantial reduction in production time. This enables engineers to dedicate their attention to more innovative and intricate jobs. Our experimental framework involves 20 diverse songs and 10 sound engineers possessing a wide range of expertise, offering a useful perspective on the adaptability and effectiveness of our method in real-world scenarios. The results demonstrate the capacity of the algorithms to mimic decision-making, achieving an optimal balance in the mix that resonates with the emotional and technical aspects of music production.","PeriodicalId":502609,"journal":{"name":"Algorithms","volume":"51 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a17060228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel approach to automated music mixing, focusing on the optimization of loudness control in multi-track recordings. By taking into consideration the complexity and artistic nature of traditional mixing processes, we introduce a personalized multi-track leveling method using two types of approaches: a customized genetic algorithm and a neural network-based method. Our method tackles common challenges encountered by audio professionals during prolonged mixing sessions, where consistency can decrease as a result of fatigue. Our algorithm serves as a ‘virtual assistant’ to consistently uphold the initial mixing objectives, hence assuring consistent quality throughout the process. In addition, our system automates the repetitive elements of the mixing process, resulting in a substantial reduction in production time. This enables engineers to dedicate their attention to more innovative and intricate jobs. Our experimental framework involves 20 diverse songs and 10 sound engineers possessing a wide range of expertise, offering a useful perspective on the adaptability and effectiveness of our method in real-world scenarios. The results demonstrate the capacity of the algorithms to mimic decision-making, achieving an optimal balance in the mix that resonates with the emotional and technical aspects of music production.