Sante Junior Bissai Nkaa, Charles Chelem Mayigué, Valentin Bomba, Véronique Mboumeu, Henri Paul Ekobena Fouda
{"title":"Finite-rate chemistry Favre-Averaged Navier-Stokes based simulation of a non-premixed SynGas/Air flame","authors":"Sante Junior Bissai Nkaa, Charles Chelem Mayigué, Valentin Bomba, Véronique Mboumeu, Henri Paul Ekobena Fouda","doi":"10.1115/1.4065596","DOIUrl":null,"url":null,"abstract":"\n The present paper is devoted to the study of the influence of chemical mechanisms, turbulence models and gas radiative properties models on the characteristics of a turbulent diffusion CO/H2/N2 -air flame, i.e., the so-called syngas flame in a Favre-averaged Navier-Stokes (FANS) environment. For this purpose, a transient FANS solver for combustion is used. The simulations are carried out using three distinct turbulence models, i.e., the standard k-ε (SKE), the renormalization group (RNG) k-ε, and the Shear Stress Transport (SST) models. The turbulence-chemistry interaction is modeled using the Partially Stired Reaction (PaSR) model. The chemical mechanisms used in the present study are: (i) a compact skeletal C2 mechanism, (ii) a mechanism developped by Frassoldati-Faravelli-Ranzi (FFR) containing 14 species and 33 reactions and (iii) the optimised syngas mechanism by Varga. Radiation heat transfer is handled by the P-1 method. In addition, the performances of two gas radiative properties models, i.e., the grey mean gas and the weighted-sum-of-gray-gases (WSGG) models, are assessed in radiative heat transfer modeling of the syngas flame. The predicted results reveal that the combination of the RNG turbulence model and the C2 skeletal mechanism shows the best agreement with measurements. The WSGG model used predicts results with the same level accuracy as the grey gas model in modeling of the syngas flame.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":"62 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Resources Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present paper is devoted to the study of the influence of chemical mechanisms, turbulence models and gas radiative properties models on the characteristics of a turbulent diffusion CO/H2/N2 -air flame, i.e., the so-called syngas flame in a Favre-averaged Navier-Stokes (FANS) environment. For this purpose, a transient FANS solver for combustion is used. The simulations are carried out using three distinct turbulence models, i.e., the standard k-ε (SKE), the renormalization group (RNG) k-ε, and the Shear Stress Transport (SST) models. The turbulence-chemistry interaction is modeled using the Partially Stired Reaction (PaSR) model. The chemical mechanisms used in the present study are: (i) a compact skeletal C2 mechanism, (ii) a mechanism developped by Frassoldati-Faravelli-Ranzi (FFR) containing 14 species and 33 reactions and (iii) the optimised syngas mechanism by Varga. Radiation heat transfer is handled by the P-1 method. In addition, the performances of two gas radiative properties models, i.e., the grey mean gas and the weighted-sum-of-gray-gases (WSGG) models, are assessed in radiative heat transfer modeling of the syngas flame. The predicted results reveal that the combination of the RNG turbulence model and the C2 skeletal mechanism shows the best agreement with measurements. The WSGG model used predicts results with the same level accuracy as the grey gas model in modeling of the syngas flame.