Finite-rate chemistry Favre-Averaged Navier-Stokes based simulation of a non-premixed SynGas/Air flame

Sante Junior Bissai Nkaa, Charles Chelem Mayigué, Valentin Bomba, Véronique Mboumeu, Henri Paul Ekobena Fouda
{"title":"Finite-rate chemistry Favre-Averaged Navier-Stokes based simulation of a non-premixed SynGas/Air flame","authors":"Sante Junior Bissai Nkaa, Charles Chelem Mayigué, Valentin Bomba, Véronique Mboumeu, Henri Paul Ekobena Fouda","doi":"10.1115/1.4065596","DOIUrl":null,"url":null,"abstract":"\n The present paper is devoted to the study of the influence of chemical mechanisms, turbulence models and gas radiative properties models on the characteristics of a turbulent diffusion CO/H2/N2 -air flame, i.e., the so-called syngas flame in a Favre-averaged Navier-Stokes (FANS) environment. For this purpose, a transient FANS solver for combustion is used. The simulations are carried out using three distinct turbulence models, i.e., the standard k-ε (SKE), the renormalization group (RNG) k-ε, and the Shear Stress Transport (SST) models. The turbulence-chemistry interaction is modeled using the Partially Stired Reaction (PaSR) model. The chemical mechanisms used in the present study are: (i) a compact skeletal C2 mechanism, (ii) a mechanism developped by Frassoldati-Faravelli-Ranzi (FFR) containing 14 species and 33 reactions and (iii) the optimised syngas mechanism by Varga. Radiation heat transfer is handled by the P-1 method. In addition, the performances of two gas radiative properties models, i.e., the grey mean gas and the weighted-sum-of-gray-gases (WSGG) models, are assessed in radiative heat transfer modeling of the syngas flame. The predicted results reveal that the combination of the RNG turbulence model and the C2 skeletal mechanism shows the best agreement with measurements. The WSGG model used predicts results with the same level accuracy as the grey gas model in modeling of the syngas flame.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":"62 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Resources Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper is devoted to the study of the influence of chemical mechanisms, turbulence models and gas radiative properties models on the characteristics of a turbulent diffusion CO/H2/N2 -air flame, i.e., the so-called syngas flame in a Favre-averaged Navier-Stokes (FANS) environment. For this purpose, a transient FANS solver for combustion is used. The simulations are carried out using three distinct turbulence models, i.e., the standard k-ε (SKE), the renormalization group (RNG) k-ε, and the Shear Stress Transport (SST) models. The turbulence-chemistry interaction is modeled using the Partially Stired Reaction (PaSR) model. The chemical mechanisms used in the present study are: (i) a compact skeletal C2 mechanism, (ii) a mechanism developped by Frassoldati-Faravelli-Ranzi (FFR) containing 14 species and 33 reactions and (iii) the optimised syngas mechanism by Varga. Radiation heat transfer is handled by the P-1 method. In addition, the performances of two gas radiative properties models, i.e., the grey mean gas and the weighted-sum-of-gray-gases (WSGG) models, are assessed in radiative heat transfer modeling of the syngas flame. The predicted results reveal that the combination of the RNG turbulence model and the C2 skeletal mechanism shows the best agreement with measurements. The WSGG model used predicts results with the same level accuracy as the grey gas model in modeling of the syngas flame.
基于有限速率化学法弗尔平均纳维-斯托克斯法的非预混合合成气/空气火焰模拟
本文致力于研究化学机制、湍流模型和气体辐射特性模型对湍流扩散 CO/H2/N2 空气火焰(即法夫尔平均纳维-斯托克斯(FANS)环境中的所谓合成气火焰)特性的影响。为此,使用了瞬态 FANS 燃烧求解器。模拟使用了三种不同的湍流模型,即标准 k-ε (SKE)、重正化组 (RNG) k-ε 和剪应力传输 (SST) 模型。湍流与化学的相互作用采用部分湍流反应(PaSR)模型。本研究采用的化学机制包括(i) 紧凑型骨架 C2 机制;(ii) 由 Frassoldati-Faravelli-Ranzi (FFR) 开发的机制,包含 14 个物种和 33 个反应;(iii) Varga 优化的合成气机制。辐射传热采用 P-1 方法处理。此外,在合成气火焰辐射传热建模中还评估了两种气体辐射特性模型的性能,即灰色平均气体模型和灰色气体加权和模型(WSGG)。预测结果表明,RNG 湍流模型和 C2 骨架机制的组合与测量结果的一致性最好。在合成气火焰建模中,所使用的 WSGG 模型与灰色气体模型的预测结果具有相同的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信