Researching visual protest and politics with “extra-hard” data

S. Özkula, J. Omena, R. Gajjala
{"title":"Researching visual protest and politics with “extra-hard” data","authors":"S. Özkula, J. Omena, R. Gajjala","doi":"10.33621/jdsr.v6i2.214","DOIUrl":null,"url":null,"abstract":"\nA range of scholars have criticised scholarly tendencies to focus on “easy” data such as provided by the low-hanging fruit of Twitter hashtag networks (Burgess & Bruns, 2015; Hargittai, 2020; Tromble, 2021). As a result, digital social research has been said to create a glut of studies that favour particular platforms, data forms, and networking dynamics, choices that may create ‘digital bias’ (Marres, 2017). These issues are particularly significant in visual data as the implicit nature of visuality means that platform spaces, text, and networked uses of visuals contribute to how visuals are interpreted in digital environments. In response to this issue, we present and critically reflect on new potentialities in software-based visual research on protest and politics, including: (1) rich cross-project comparisons; (2) complementing platform data with on-the-ground engagement, and (3) quali-quanti visual methods. These allow for rich data journeys through multi-modality, hybridity, comprehensive data curation, reiterative image data collection and interpretation, and the inclusion of contextual reflections in focused visual research, elements that provide meaning, texture, and context (= extra-hard data). We argue that visual digital methods consequently have the potential to provide nuanced, robust, and versatile analysis of visual data, if not necessitate these in a post-API age in which easy data access is no longer a given.\n","PeriodicalId":475991,"journal":{"name":"Journal of digital social research","volume":"46 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of digital social research","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.33621/jdsr.v6i2.214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A range of scholars have criticised scholarly tendencies to focus on “easy” data such as provided by the low-hanging fruit of Twitter hashtag networks (Burgess & Bruns, 2015; Hargittai, 2020; Tromble, 2021). As a result, digital social research has been said to create a glut of studies that favour particular platforms, data forms, and networking dynamics, choices that may create ‘digital bias’ (Marres, 2017). These issues are particularly significant in visual data as the implicit nature of visuality means that platform spaces, text, and networked uses of visuals contribute to how visuals are interpreted in digital environments. In response to this issue, we present and critically reflect on new potentialities in software-based visual research on protest and politics, including: (1) rich cross-project comparisons; (2) complementing platform data with on-the-ground engagement, and (3) quali-quanti visual methods. These allow for rich data journeys through multi-modality, hybridity, comprehensive data curation, reiterative image data collection and interpretation, and the inclusion of contextual reflections in focused visual research, elements that provide meaning, texture, and context (= extra-hard data). We argue that visual digital methods consequently have the potential to provide nuanced, robust, and versatile analysis of visual data, if not necessitate these in a post-API age in which easy data access is no longer a given.
用 "超硬 "数据研究视觉抗议和政治
许多学者批评学术界倾向于关注 "简单 "的数据,如推特标签网络提供的 "低垂果实"(Burgess & Bruns, 2015; Hargittai, 2020; Tromble, 2021)。因此,数字社会研究被认为会产生大量偏爱特定平台、数据形式和网络动态的研究,这些选择可能会产生 "数字偏见"(Marres, 2017)。这些问题在视觉数据中尤为重要,因为视觉性的隐含性质意味着平台空间、文本和视觉的网络化使用有助于在数字环境中如何解读视觉。针对这一问题,我们介绍并批判性地反思了基于软件的抗议与政治视觉研究的新潜力,包括:(1) 丰富的跨项目比较;(2) 用实地参与补充平台数据;(3) 定性-量化视觉方法。这些方法通过多模式、混合性、全面的数据整理、反复的图像数据收集和解释,以及在集中的视觉研究中纳入背景反思等提供意义、质地和背景(=超硬数据)的元素,实现了丰富的数据之旅。我们认为,视觉数字方法因此有可能对视觉数据进行细致入微、稳健和多用途的分析,甚至在后API时代,这些方法也是必要的,因为在这个时代,便捷的数据访问不再是必然的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信