{"title":"Human gait-type recognition without pre-training: an adaptive fuzzy-based approach for locomotion-assistance devices","authors":"Natee Chirachongcharoen, Sajid Nisar","doi":"10.1007/s10015-024-00950-x","DOIUrl":null,"url":null,"abstract":"<div><p>Gait-type recognition is important for robotic exoskeletons and walking-assistance devices to adjust their output according to the users’ needs. However, the growing trend of using machine learning (ML) models is both labor- and data-intensive, which makes it practically less attractive for application in exoskeletons and wearable-assistive devices. This research aims to devise a fuzzy-based gait recognition algorithm that requires minimum training data (only 40 cycles for each of the 5 gait types) and adapts to new users without having the need of pre-training for each of them. The proposed algorithm uses the fuzzy logic system (FLS) and Welford’s (variance computation) method to enhance the adaptability by adjusting the rules for gait-type recognition and fine-tuning them in real time for every new user without requiring a specific prior training. Simulation-based evaluation of the proposed algorithm shows a gait-type recognition accuracy of 63.0%, an improvement of 36.8% over the non-adaptive fuzzy-based recognition algorithm. Moreover, the results show that the proposed algorithm outperforms the popular ML methods (support vector machine, Naive Bayes classifier, and logistic regression) when subjected to limited gait-cycles data and no prior training is provided.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-024-00950-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gait-type recognition is important for robotic exoskeletons and walking-assistance devices to adjust their output according to the users’ needs. However, the growing trend of using machine learning (ML) models is both labor- and data-intensive, which makes it practically less attractive for application in exoskeletons and wearable-assistive devices. This research aims to devise a fuzzy-based gait recognition algorithm that requires minimum training data (only 40 cycles for each of the 5 gait types) and adapts to new users without having the need of pre-training for each of them. The proposed algorithm uses the fuzzy logic system (FLS) and Welford’s (variance computation) method to enhance the adaptability by adjusting the rules for gait-type recognition and fine-tuning them in real time for every new user without requiring a specific prior training. Simulation-based evaluation of the proposed algorithm shows a gait-type recognition accuracy of 63.0%, an improvement of 36.8% over the non-adaptive fuzzy-based recognition algorithm. Moreover, the results show that the proposed algorithm outperforms the popular ML methods (support vector machine, Naive Bayes classifier, and logistic regression) when subjected to limited gait-cycles data and no prior training is provided.