Stress Recognition in Code-Mixed Social Media Texts using Machine Learning

IF 0.3 Q4 MATHEMATICS, APPLIED
Lemlem Eyob, Tewodros Achamaleh, Muhammad Tayyab, Grigori Sidorov, Ildar Batyrshin
{"title":"Stress Recognition in Code-Mixed Social Media Texts using Machine Learning","authors":"Lemlem Eyob, Tewodros Achamaleh, Muhammad Tayyab, Grigori Sidorov, Ildar Batyrshin","doi":"10.61467/2007.1558.2024.v15i1.430","DOIUrl":null,"url":null,"abstract":"Stress, being a complex emotional state caused by a variety of multiple sources, has the potential for serious effects if left untreated. The primary goal of this research is to select and consider AI models that effectively recognize stress within the complicated domain of social media posts. The significance of this study is not only the categorization of stress but also the interpretation of the sophisticated methods that serve as the basis for these emotional responses. Among the traditional machine learning models, Random Forest, K-Nearest Neighbor, Logistic Regression, Decision Tree, and Support Vector Machine are used. The deep learning model’s LSTM, BiLSTM, and transformer-based models m-BERT, AL-BERT, XLM-RoBERTa, IndicBERT, and Distil-BERT were used. Of those models, LSTM proved to be the best-performing model, with an F1-score of 0.75.","PeriodicalId":42388,"journal":{"name":"International Journal of Combinatorial Optimization Problems and Informatics","volume":"8 3","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Combinatorial Optimization Problems and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61467/2007.1558.2024.v15i1.430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Stress, being a complex emotional state caused by a variety of multiple sources, has the potential for serious effects if left untreated. The primary goal of this research is to select and consider AI models that effectively recognize stress within the complicated domain of social media posts. The significance of this study is not only the categorization of stress but also the interpretation of the sophisticated methods that serve as the basis for these emotional responses. Among the traditional machine learning models, Random Forest, K-Nearest Neighbor, Logistic Regression, Decision Tree, and Support Vector Machine are used. The deep learning model’s LSTM, BiLSTM, and transformer-based models m-BERT, AL-BERT, XLM-RoBERTa, IndicBERT, and Distil-BERT were used. Of those models, LSTM proved to be the best-performing model, with an F1-score of 0.75.
利用机器学习识别代码混合社交媒体文本中的重音
压力是一种由多种来源引起的复杂情绪状态,如果不加以治疗,可能会产生严重影响。本研究的主要目标是选择和考虑能在社交媒体帖子的复杂领域内有效识别压力的人工智能模型。这项研究的意义不仅在于对压力进行分类,还在于解释作为这些情绪反应基础的复杂方法。在传统的机器学习模型中,使用了随机森林(Random Forest)、K-近邻(K-Nearest Neighbor)、逻辑回归(Logistic Regression)、决策树(Decision Tree)和支持向量机(Support Vector Machine)。使用了深度学习模型的 LSTM、BiLSTM 和基于变换器的模型 m-BERT、AL-BERT、XLM-RoBERTa、IndicBERT 和 Distil-BERT。在这些模型中,LSTM 被证明是表现最好的模型,其 F1 分数为 0.75。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信